ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., I-3, 359-364, 2012
© Author(s) 2012. This work is distributed
under the Creative Commons Attribution 3.0 License.
23 Jul 2012
C. Vogel1, A. Bauder2, and K. Schindler1 1Photogrammetry and Remote Sensing, ETH Zürich
2Laboratory of Hydraulics, Hydrology and Glaciology (VAW), ETH Zürich
Keywords: Glaciology, Estimation, Orthoimage, Automation, Accuracy, Temporal, Experiment Abstract. Quantitative measurements of glacier flow over time are an important ingredient for glaciological research, for example to determine the mass balances and the evolution of glaciers. Measuring glacier flow in multi-temporal images involves the estimation of a dense set of corresponding points, which in turn define the flow vectors. Furthermore glaciers exhibit rather difficult radiometry, since their surface usually contains homogeneous areas as well as weak texture and contrast. To date glacier flow is usually observed by manually measuring a sparse set of correspondences, which is labor-intensive and often yields rather irregular point distributions, with the associated problems of interpolating over large areas. In the present work we propose to densely compute motion vectors at every pixel, by using recent robust methods for optic flow computation. Determining the optic flow, i.e. the dense deformation field between two images of a dynamic scene, has been a classic, long-standing research problem in computer vision and image processing. Sophisticated methods exist to optimally balance data fidelity with smoothness of the motion field. Depending on the strength of the local image gradients these methods yield a smooth trade-off between matching and interpolation, thereby avoiding the somewhat arbitrary decision which discrete anchor points to measure, while at the same time mitigating the problem of gross matching errors. We evaluate our method by comparing with manually measured point wise ground truth.
Conference paper (PDF, 25036 KB)

Citation: Vogel, C., Bauder, A., and Schindler, K.: OPTICAL FLOW FOR GLACIER MOTION ESTIMATION, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., I-3, 359-364, doi:10.5194/isprsannals-I-3-359-2012, 2012.

BibTeX EndNote Reference Manager XML