ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., II-1, 9-16, 2014
http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-1/9/2014/
doi:10.5194/isprsannals-II-1-9-2014
© Author(s) 2014. This work is distributed
under the Creative Commons Attribution 3.0 License.
 
07 Nov 2014
Motion Vector Field Estimation Using Brightness Constancy Assumption and Epipolar Geometry Constraint
S. Hosseinyalamdary and A. Yilmaz Photogrammetric Computer Vision, Civil Engineering Department, The Ohio State University, Columbus, USA
Keywords: IMU, Camera-IMU Integration, Visual-Inertial, Epipolar Geometry Constraint, Brightness Constancy Assumption, Optical Flow Abstract. In most Photogrammetry and computer vision tasks, finding the corresponding points among images is required. Among many, the Lucas-Kanade optical flow estimation has been employed for tracking interest points as well as motion vector field estimation. This paper uses the IMU measurements to reconstruct the epipolar geometry and it integrates the epipolar geometry constraint with the brightness constancy assumption in the Lucas-Kanade method. The proposed method has been tested using the KITTI dataset. The results show the improvement in motion vector field estimation in comparison to the Lucas-Kanade optical flow estimation. The same approach has been used in the KLT tracker and it has been shown that using epipolar geometry constraint can improve the KLT tracker. It is recommended that the epipolar geometry constraint is used in advanced variational optical flow estimation methods.
Conference paper (PDF, 6521 KB)


Citation: Hosseinyalamdary, S. and Yilmaz, A.: Motion Vector Field Estimation Using Brightness Constancy Assumption and Epipolar Geometry Constraint, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., II-1, 9-16, doi:10.5194/isprsannals-II-1-9-2014, 2014.

BibTeX EndNote Reference Manager XML