ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., II-2/W2, 175-181, 2015
http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-2-W2/175/2015/
doi:10.5194/isprsannals-II-2-W2-175-2015
© Author(s) 2015. This work is distributed
under the Creative Commons Attribution 3.0 License.
 
19 Oct 2015
IDENTIFICATION AND MAPPING OF TREE SPECIES IN URBAN AREAS USING WORLDVIEW-2 IMAGERY
Y. T. Mustafa1, H. N. Habeeb2, A. Stein3, and F. Y. Sulaiman2 1Faculty of Science, University of Zakho, Kurdistan Region of Iraq
2Directorate of Forestry, Duhok, Kurdistan Region of Iraq
3Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente, 7500 AE Enschede, the Netherlands
Keywords: Urban tree species, Supervised classification, VHR imagery, Kurdistan Region of Iraq Abstract. Monitoring and mapping of urban trees are essential to provide urban forestry authorities with timely and consistent information. Modern techniques increasingly facilitate these tasks, but require the development of semi-automatic tree detection and classification methods. In this article, we propose an approach to delineate and map the crown of 15 tree species in the city of Duhok, Kurdistan Region of Iraq using WorldView-2 (WV-2) imagery. A tree crown object is identified first and is subsequently delineated as an image object (IO) using vegetation indices and texture measurements. Next, three classification methods: Maximum Likelihood, Neural Network, and Support Vector Machine were used to classify IOs using selected IO features. The best results are obtained with Support Vector Machine classification that gives the best map of urban tree species in Duhok. The overall accuracy was between 60.93% to 88.92% and κ-coefficient was between 0.57 to 0.75. We conclude that fifteen tree species were identified and mapped at a satisfactory accuracy in urban areas of this study.
Conference paper (PDF, 1438 KB)


Citation: Mustafa, Y. T., Habeeb, H. N., Stein, A., and Sulaiman, F. Y.: IDENTIFICATION AND MAPPING OF TREE SPECIES IN URBAN AREAS USING WORLDVIEW-2 IMAGERY, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., II-2/W2, 175-181, doi:10.5194/isprsannals-II-2-W2-175-2015, 2015.

BibTeX EndNote Reference Manager XML