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ABSTRACT: 

 

Currently, there is a rapid development in the techniques of the automated image based modelling (IBM), especially in advanced 

structure-from-motion (SFM) and dense image matching methods, and camera technology. One possibility is to use video imaging to 

create 3D reality based models of cultural heritage architectures and monuments. Practically, video imaging is much easier to apply 

when compared to still image shooting in IBM techniques because the latter needs a thorough planning and proficiency. However, 

one is faced with mainly three problems when video image sequences are used for highly detailed modelling and dimensional survey 
of cultural heritage objects. These problems are: the low resolution of video images, the need to process a large number of short 

baseline video images and blur effects due to camera shake on a significant number of images.  

In this research, the feasibility of using video images for efficient 3D modelling is investigated. A method is developed to find the 

minimal significant number of video images in terms of object coverage and blur effect. This reduction in video images is 
convenient to decrease the processing time and to create a reliable textured 3D model compared with models produced by still 

imaging.    

Two experiments for modelling a building and a monument are tested using a video image resolution of 1920×1080 pixels. Internal 

and external validations of the produced models are applied to find out the final predicted accuracy and the model level of details. 
Related to the object complexity and video imaging resolution, the tests show an achievable average accuracy between 1 – 5 cm 

when using video imaging, which is suitable for visualization, virtual museums and low detailed documentation. 

  
 

1. INTRODUCTION 

 

Nowadays, the generation of a reality based 3D model of 

architectural objects and monuments is mainly achieved using 
non-contact measurement methods. The measurements can be 

applied either by active sensors like laser scanners or passive by 

cameras. These methods for objects modelling can be 

distinguished as:  image-based modelling (IBM), range-based 
modelling, or a combination of both techniques (Remondino 

and El-Hakim, 2006). Image based methods are preferred for 

limited budget projects beside their practicality and portability 

in complex sites.  Moreover, the advances in the state-of-the-art 
of image orientation, image dense matching and modelling 

offer a toolbox for the digital documentation and preservation 

of cultural heritage (Santagati et al., 2013). Currently, different 

efficient automated or semi-automated image based modelling 

software are available in the market like (Acute3D, 2013; 

EOSsystems, 1994; Photoscan, 2011; Pix4D, 2013) beside the 

other open source software which offer the same functions like 

in (Furukawa and Ponce, 2010; Meshlab, 2010; Pierrot-
Deseilligny, 2012; Snavely, 2010; Wenzel, 2013; Wu, 2012).  

The captured images can be taken either with a static camera 

(still shots) or a moving camera (video sequence). Usually, high 

resolution still shot images are used for the 3D modelling and 
documentation which is captured either from an aerial platform 

or from the ground. The created 3D models from these images 

are reliable in the sense of visualization and accuracy. This 

reliability is based on several factors like: the high resolution of 

the taken images from either compact or SLR cameras, the low 

radiometric and geometric distortions of the images and the 

proper camera network design.  

However, the disadvantages of using still image shooting in 3D 

modelling is the need for proficiency or expertise: the difficulty 

to capture the needed number of images, the proper pose of the 

cameras during the capture, and to ensure the required overlap 
between the images. Consequently, it is difficult for non-

professionals to cover the whole object and to avoid an 

unfavorable wide baseline network configuration (large 

base/depth ratio) for the 3D modelling (Alsadik et al., 2012, 
2013). This wide baseline imaging can represent a difficulty in 

image based modeling for the image orientation and the 

subsequent dense matching because of the scale variations and 

occlusions that may exist. Currently, scale invariant operators 
like SIFT (Lowe, 2004) and SURF (Bay et al., 2008) represent 

the state-of-the-art tool for tie points matching . However, these 

matching operators still have restrictions to match homologous 

points in wide baseline images (Barazzetti et al., 2010).  

After tie point matching a structure-from-motion (SfM) 

technique is to be used for the computation of the image 

orientation and the sparse point cloud by bundle adjustment 

(McGlone et al., 2004). Then, the dense matching is applied for 
creating a dense point cloud of the object. As recommended in 

(Haala, 2011; Hullo et al., 2009), it is preferred to keep a 

reasonable base\depth ratio between (0.15 – 0.30) to have a 

successful dense matching approach. These aforementioned 
restrictions put some difficulty on the camera planning stage, 

which is to be implemented by professionals as mentioned 

earlier.  

On the other hand, the video image sequence represents a short 

baseline imaging with a high redundancy in the number of 

images. The image tie points matching can also be done by the 

mentioned techniques like SIFT or by the so-called feature 
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tracking like by using (variants of) the KLT method (Tomasi 

and Kanade, 1992). In the past decade, approaches like in 
(Nister, 2001; Pollefeys et al., 2008) were used in processing 

video image sequence to reconstruct 3D scenes which are 

scaled into reality using a spatial similarity transformation. The 

major advantage of video imaging is the flexibility of the 
recording and ease which, in contrast to still image shooting, 

enables even non-professionals to document sites. However, the 

resolution of the conventional consumer video cameras and 

camcorders is not sufficient (less than 3Mp) when compared to 
the high resolution (HR) still images. Moreover, a significant 

number of the video image frames are relatively blurry due to 

the motion of the camera during the capture and this means a 

loss of some information in the images. Therefore, the created 
3D models from video images might be of lower geometric and 

radiometric quality, compared to HR still imaging.Another 

drawback of using video sequences for 3D modeling is that a 

huge amount of data needs to be processed. With a frame rate 
of 20 images/s a number of 1000 images is easily reached. For 

still image networks it was demonstrated in (Alsadik et 

al.,2013) that the required triangulation accuracy and density of 

point clouds can still be obtained after a systematic and 
significant reduction of images. In this paper we like to transfer 

this idea to video sequences: what is the impact a reduction of 

frames has on the final accuracy? 

To this end a method is presented to find the minimum number 
of video images that guarantees both: a full coverage and a 

limited amount of blur effect to finally create 3D models. 

Accordingly, accuracy validations are applied to study the 

feasibility of using the video image sequence for 3D modelling. 

Finally, conclusions will be made based on the standards in 

(Letellier, 2007) to decide whether video imaging represent an 

alternative to the still imaging in cultural heritage 

documentation. 
 

2. METHODOLOGY 

 

The key idea of an efficient use of the video image sequence in 
modelling is by removing blurry video images and in addition, 

filter out redundant image frames according to some criteria 

based on coverage. An alternative would be to filter for 

accuracy to guarantee a pre-defined accuracy (Alsadik et al., 
2014b). Fig.1 shows the general pipeline proposed in this 

research to use the video images for the 3D modelling. Note 

that in this paper we will not concentrate on the final 

meshing/texturing step. 
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+image orientation

Image sequence
dataset

Blur free images

Dense point 
cloud

Turn into frames

Test for blur

Dense matching 

Textured Surface 
mesh

editing

Filtered images
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minimal network

SfM

Bundle 
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SIFT matching
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Figure 1. The proposed method for automated 3D modelling 

from video image sequence 

The proposed method is based on having both: rough point 

cloud of the object and the video images orientation. To this 
end, we need to apply the SfM technique on the blur free 

images which is a time consuming approach for large data set. 

Therefore, we suggest to use the down-sampled images of (640 

pixels) with a guided SIFT matching of two consecutive frames 
to reduce the processing time. All subsequent steps, however, 

will be done using the full resolution video frames. This will 

significantly save processing time in dense matching and SfM 

as will be shown in the two experiments. 
 

2.1 Removal of Blurred Images 

 

Currently, different methods are used to detect the image blur. 
In this research, the method developed by Crete et al. (2007) 

will be used for its efficiency and fast implementation. The 

method is based first on the computation of the intensity 

differences between neighbouring pixels of the original image. 
This computation will be repeated, but after intentionally 

blurring the image with a low-pass filter. These intensity 

differences before and after the blurring will be compared to 

evaluate the blur amount. Thus, a metric for sharpness or 
blurriness is based on either a high or slight variation between 

the original and the blurred image respectively. Finally, a blur 

index is computed with a range between  0 to 1 for the best or 

worst quality respectively. 
The software developed by Bao (2009) is used to test the blur 

on the image dataset which is based on (Crete et al., 2007) 

paper. Fig. 2 shows a sample test for two consecutive video 

images for this blur estimation technique. 

After testing several datasets an empirical rejection threshold of 

(0.45) is selected to filter out the blurry images in a dataset and 

keep the clear sharp images. It should be noticed that the high 

redundancy in the video images will ensure the sufficient 
coverage of the images after the filtering. 
 

  

(a) Blur metric= 0.29  (b) Blur metric= 0.46  

Figure 2. Sample test for the blur metric computation. 

 

2.2 Minimal camera network 

 

The method of computing the minimal number of images is 

presented in (Alsadik et al., 2013; Alsadik et al., 2014b) and 
based on the concept of having at least three cameras viewing 

simultaneously every object point. Therefore, the cameras are 

considered redundant if they only result in coverage by more 

than three cameras as shown in Fig. 3. Another constraint of the 
B/D ratio is added to ensure a successful dense image matching.  

  
              (a)                 (b)             (c) 

Figure 3. The concept of filtering redundant cameras. (a) Before 

filtering. (b) After filtering. (c) Number of covering cameras 

before and after the filtering. 

    
Accordingly, there is a need to first create a rough point cloud 

of the object and also to compute the orientation of the images. 

B/D <threshold 
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This is can be done by applying a SfM on the blur-free full set 

of the downsampled video images. The rough point cloud is 
necessary to obtain the shape and size of the object for the 

subsequent filtering of the redundant video images. In 

experiments we retrieve this initial information from the down-

sampled image sequence to save the processing time. The total 
time needed for this SfM step and the proposed filtering will 

significantly reduce the processing time compared to the 

conventional approach as will be shown.  

The methodology of filtering is summarized as follows and 
shown in Fig. 4:  

1- Derive a rough point cloud of the object. The resulted 

sparse point cloud after the image orientation step with 

SfM technique is enough for this task.  
2- Divide the derived rough point cloud of the object into 

over-covered and fair-covered. Over-covered points, are 

the points that appear in more than three cameras while 

fair-covered points, refer to the points that appear in three 
cameras. 

3- Label the cameras as redundant or significant based on 

the number of the viewed over-covered points and fair 

covered points. 
4- Arrange the redundant cameras involved in imaging over-

covered points according to their coverage (number of 

points) in an ascending order. The reason for this 

arrangement is to cancel the redundant cameras that are 
imaging a fewer number of points and to keep the other 

cameras. 

5- Check the effect of the camera cancelation on the B/D 

ratio. Accordingly, cancel the camera that is involved in 

imaging only the over-covered point group and doesn't 

produce a large B/D ratio in the network configuration. 

6- Test the filtering iteratively according to the computed 

coverage after the camera cancelation and re-label the 
point cloud in each iteration into over-covered and fair-

covered. 

7- This procedure is re-iterated starting at step 3. The 

filtering is repeated until no more redundant cameras 
involved in imaging.   
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imaging network
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Figure 4. The workflow diagram of filtering the redundant 

images.   

We make the assumption that the video was constantly in 

motion, hence we avoid infinite homographys which would 
render the entire process instable. In addition we request that 

the length of blurred sequences is small, this means that there is 

always enough sharp imagery to guarantee a closed image 

block. Please note that loop closure is implicitly done, since the 
method will automatically connect for instance images from the 

start of the sequence with those from the end, because the point 

reprojection is done on the initial image orientations, not on the 

initial matching graph. 
It is also worth to mention that we used the point cloud 

visibility with hidden point removal (HPR) method. The 

concept of this method is applied by assuming the viewpoint C 

is placed at a sphere origin. The point cloud is projected 
through the sphere to the opposite outer side in what is named 

spherical flipping. Spherical flipping reflects a point with 

respect to the sphere by applying an equation defined by (Katz 

et al., 2007). The flipped point cloud and the viewpoint will be 
represented by a convex hull. Then, the transformed points that 

are located on the convex hull are extracted as visible points.  

The major advantages of this method are to determine the 

visibility without reconstructing a surface compared to other 
visibility methods beside the simplicity and short 

implementation time. Moreover, it calculates visibility for 

dense as well as sparse point clouds, for which reconstruction 

or other methods, might be failing. However, the disadvantage 
is realized when a noisy point cloud exists (Mehra et al., 2010). 

Moreover, it is necessary to set a suitable radius parameter that 

defines the reflecting sphere (Alsadik et al., 2014a).  

 

 

3. EXPERIMENTAL TESTS 

 

Two experiments of the presented approach were tested. The 
first one was for modelling a church building and the second 

test was for modelling a monument. All the computations were 

applied on a laptop Dell Latitude E6540 Core i7 and used the 

state-of-the-art Agisoft photoscan software (Photoscan, 2011). 
The video imaging is performed by Canon EOS 500D with 

1920×1080 pixels in MOV format with a frame rate of 20 fps. 

Moreover, a still imaging with the same camera is also 

conducted in a high resolution (HR) of 15MP for details 
comparison. It is worth to mention that we used the self-

calibration approach for all the tested video networks to apply a 

fully automated SfM. The results are shown in the following 

sections. 
 

3.1 Church building experiment 

 

The first experiment was applied to the old church building of 
Enschede in the Netherlands as shown in Fig. 5a which shows 

the 3D graphical representation taken from google earth 

(Google, 2010). To verify the video imaging for the 3D 

modelling, a benchmarking was necessary to have an external 
validation for the accuracy and reliability of the produced 

models. Therefore, terrestrial laser scanning (TLS) was 

conducted around the church building (Fig.6) by using 

“Trimble CX scanner” where the manufacturer single point 
accuracy standards were: 4.5 mm @ 30 m. Moreover, five 

ground control points GCPs were fixed on the church facades 

as shown in Fig.5b to register the created video based point 
clouds into the TLS point cloud. The TLS point cloud consists 

of more than 23 million points as shown in Fig. 6. The GCP 

target points were marked manually on the corresponding 

images. The careful zooming and marking was applied by the 
same observer on the images to decrease the chance of marking 

errors. Fig.7 illustrates the target design and the target images 
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in the mentioned video and still image resolutions. The imaging 

scales and ground sample distances GSDs are shown in Table 1. 
 

 

       
(a)                                                  (b) 

Figure 5. (a) Old Church in Enschede city. (b) The GCPs 

distribution.  

 
Figure 6. The church point cloud obtained by TLS. 

  
 

  
       (a)                      (b)                       (c)                      

Figure 7. (a) Target design. (b) Target with the video image 

resolution of 1920×1080 pixels. (c) Target with the still image 

resolution of 4752×3168 pixels.  

 

Imaging network [pixels] 
Av. 

scale 

Pixel size 

[mm] 

GSD 

[mm] 

Video          : 1920×1080 1/300 0.020 6 

Still images: 4752×3168 1/600 0.005 3 

 

Table 1. The scale and GSD of the video and still imaging 

networks 

 
To evaluate the reliability and accuracy of using the video 

imaging for the 3D modelling and documentation, a cloud to 

cloud distance C2C is computed for a randomly selected four 

elements of the whole church building. Two windows, one 
column and a planar façade were tested for this comparison as 

shown in Fig.8.   

     
 

Figure 8. The selected samples (red) of two windows, a column, 

and a façade for the validation. 

The RMSE was computed for the GCPs after image orientation 

to indicate the quality of the image orientation or SfM 
computations in the camera network. Due to the lack of 

additional ground control, we were not able to include 

independent check points.  

The rough point cloud resulting after applying SfM technique 
was used to compute the minimal number of images in the 

sequence (section 2.2). This is a reasonable and efficient way to 

have a fair representation of the study object in an automated 

faster way as will be shown in Fig. 11. Video images were also 
down-sampled into 640 pixels before running the SfM 

technique to reduce the needed time of processing.  

  

The video imaging of 1920×1080 pixels test: 
986 image frames are extracted from the video file and the 

highly blurred images (351 frames) are excluded from the 

dataset as shown in the bar plot of Fig.9a. The blur-free image 

network is shown in Fig. 10a. The images were then filtered to 
a minimum of 347 images (Fig. 10b) where the average number 

of the detected SIFT points in a single video image was around 

10000 points. The number of image pairs in the full pairwise 

matching decreased from 201295 pairs to 60031 pairs as shown 
in Fig.9b. The final created dense point cloud before filtering is 

shown in Fig 10c and the point cloud created from the filtered 

images is shown in Fig. 10d.  

  
Figure 9. (a) Number of video images before and after filtering. 

(b) Possible number of stereo pairs within full pairwise 

matching before and after filtering. 

 

 
(a)                                          (b) 

  
(c)                                            (d) 

Figure 10. Point cloud from video images of 1920 pixels. (a) 

SfM output before filtering. (b) SfM output after filtering. (c) 

Dense point cloud using unfiltered sequence. (d) 3D Dense 
point cloud after filtering. 

 

Table 2 and Fig. 11 shows the time consumption needed for the 

SfM and dense matching before and after filtering.  
 

 
 

Before filtering 
[minutes] 

After filtering 
[minutes] 

SfM  210  71 

Dense matching   390 86 

 

Table 2. Time consumption for SfM and dense matching for the 

church experiment 
 

 27×27pixels 

 

GCP 1 

GCP 2 

 

GCP 5 

GCP 4 

GCP 3 

50×50 pixels 
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The proposed method as indicated previously is relying on 

filtering redundant cameras. Our Matlab code consumed 120 
minutes for the filtering computation while the SfM consumed 

36 minutes to process the full downsampled data set. The total 

time consumption is illustrated in Fig. 11 where a time 

reduction of 50% is achieved. 
 

 
Figure 11. The total time consumption comparison. 

 

The RMSE was computed as shown in Table 3 which shows an 

error of ≅ 3mm before filtering and ≅ 5mm after filtering. To 

evaluate the accuracy of the created model before filtering, the 

C2C distance point based comparison is applied using cloud 

compare software as shown in Fig. 12 and Table 4. The blue 

colour refers to near zero shift distances while the red colour 

refers to  larger shift distance.  
 

 RMSEX 
[mm] 

RMSEY 
[mm] 

RMSEZ 
[mm] 

RMSEt 
[mm] 

Before filtering 1.9 0.9 1.6 2.6 

After filtering 4.8 2.4 1.2 5.4 

Table 3. The RMSE of the GCPs before and after filtering of 

the video network. 

 

Point cloud 

comparison 

No. of 

points 

Mean shift 

[cm] 

Std. deviation 

[cm] 

Window I 221294 2.0 ±1.5 

Window III 174690 3.6 ±2.4 

Column 337692 4.9 ±2.7 

Facade  494347 7.9 ±2.0 

Table 4. C2C computations for the different parts of the 

building of the point cloud before filtering 
 

  
   (a)             (b) 

    
(c)     (d) 

Figure 12. Dense video output before filtering. (a) C2C 

comparison of window I. (b) C2C comparison of window II. (c) 

C2C comparison of the column. (d) C2C comparison of the 

façade.  

The C2C distance point based comparison after filtering is also 

shown in Fig. 13 and Table 5. 
 

Point cloud 
comparison 

No. of 
points 

Mean shift 
[cm] 

Std. deviation 
[cm] 

Window I 205811 2.7 ±2.1 

Window II 144556 3.0 ±2.1 

Column 314312 5.3 ±3.1 

Facade  487977 6.6 ±1.9 

Table 5. C2C computations for the different parts of the 
building point cloud after filtering 

 

   
(a)   (b) 

  
(c)     (d) 

 
(e) 

Figure 13. Video based point cloud after filtering (a) C2C 

comparison of window I. (b) C2C comparison of window II. (c) 
C2C comparison of the column. (d) C2C comparison of the 

facade. (e) Video based point cloud and validation parts in red. 

 

The still image shooting of the church: 
To evaluate the details represented in the 3D model of the video 

imaging, a high resolution (4752×3168 pixels) images are 

taken by an 18 mm Canon camera as mentioned earlier. The 

expected accuracy in the object space was around 10mm based 
on a half pixel image measurement accuracy. The complete set 

of the captured images contained 118 images (Fig.14). The 

same GCPs are used to reference the camera network. It must 

be noted that the planning of the image set is applied by a 
professional user. This proficiency requirement motivates the 

use of the easy to capture video imaging as investigated in this 

paper. 
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Figure 14. The still imaging camera network 

 

To evaluate the amount of details and visualization acquired 
from video imaging, a comparison of 3D details with the still 

imaging is shown in Fig.15.  

     
(a) ≅ 200000 𝑝𝑜𝑖𝑛𝑡𝑠         (b) ≅ 850000 𝑝𝑜𝑖𝑛𝑡𝑠 

Figure 15. (a) Video - based point cloud of window I after 

filtering. (b) Still imaging point cloud of the window I. 

 

 
(a) 

 
(b) 

Figure 16. (a) Point cloud from video imaging. (b) Point cloud 
from HR still imaging.  

 

Fig.16 shows the decoration of window I of the church where 

the level of details and the number of points is four times higher 
in the still imaging than the video imaging. This is an expected  

result because of the high resolution of the still images and their 

higher geometric and radiometric stability. 

From this experiment, two benefits of the developed method are 

noticed: 1) Filtering didn't significantly reduce the number of 

points in the final point cloud which is an advantage. 2) 

Filtering does not have a notable negative impact on the 

accuracy.  

3.2 Monument experiment 

 
The second experiment is applied to a monument in the old city 

of Enschede of Fig. 17, which is built in 1912 to commemorate 

the disaster of the city fire in 1863. The point cloud acquired by 

TLS consisting of 1 million points. For validation 
computations, two patches (red) are selected as shown in Fig 

17b. 

 
(a)                                       (b) 

Figure 17. (a) TLS point cloud. (b) Two point patches for 

validation in red. 

 

A video imaging with a resolution of 1920 pixels was taken 
around the monument at a scale of 1/250. Three target control 

points were temporally fixed on the monuments for referencing. 

The pixel size in the extracted frame was 0.02mm and the 

ground sample distance GSD was 5mm. A total of 670 video 
images was acquired from the video stream which were filtered 

for blur effect to 233 images. The camera network and the 

rough cloud are shown in Fig.19a. Then, as applied previously 

in the first experiment, a minimal camera network of 64 images 
was extracted based on coverage filtering as shown in Fig.19b. 

The reduction in the number of video images in the filtering 

steps is shown in Fig. 18. The full pairwise matching was 

reduced from 224115 pairs to only 1830 pairs. 
 

 
Figure 18. Number of video images of the monument before 

and after filtering. 

 
(a) 

 
(b) 

Figure 19. (a) Video camera network of 233 blur-free images. 
(b) Minimal video camera network of 64 images. 
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Accordingly, a dense point cloud after filtering was created and 

resulted with ≅ 900000 points as shown in Fig.21. 
The time consumed for the SfM and dense matching is shown 

in Fig. 20 before filtering (233 images) and after filtering (64 

images).   

 

 
Figure 20. The time consumed for dense matching and SfM 

before and after filtering for the monument experiment. 

 

 
Figure 21. Video based dense point cloud of the monument 

after filtering. 

 

For validation, two patch clusters of points were selected to 

check the accuracy of the resulted video based point cloud. The 
tests shown in Fig.22a and Fig.22b resulted in mean distances 

of 4.7±1.2cm and 1.0 ± 0.6 cm respectively. 

 

    

 
(a) C2C between16441 video based points and 17108 

TLS points. 

   
(b) C2C between 38493 video based points and 59073 

TLS points. 

Figure 22. Validation of the video imaging for the monument.  
(a) C2C comparison of  1st patch. (b) C2C comparison of 2nd 

patch. 

To validate the extracted details from the video, 40 HR images 

are captured around the monuments and oriented to produce a 
3D model as shown in Fig.23. A black coloured sculpture 

(1.8×0.8 m2) on the upper part of the monument is selected to 

compare the amount of details gathered from the video with 

respect to the still images (Fig.24). The number of points and 
consequently the details of the video based point cloud is not 

adequate for cultural heritage documentation as shown in Fig. 

24.  

 
Figure 23. The still imaging network of the monument. 
 

 
(a) 

 
(b) 

Figure 24. (a) Video based point cloud (30000 points) of the 
sculpture. (b) Still image based point cloud (74000 points) of 

the sculpture. 
 

 

4. DISCUSSION AND CONCLUSIONS 

 

In this research a method of using video images (1920×1080 

pixels) for 3D modelling was developed and its feasibility for 
cultural heritage documentation was investigated. Two filtering 

steps were suggested by firstly removing blurry images from 

the dataset and secondly to exclude redundant cameras in terms 

of coverage. Two experimental tests of a church and a 
monument were presented and the accuracy was evaluated by 

comparing the created point cloud to a reference TLS point 

cloud. Four selected sub-point clouds of two windows, a 

column and a planar façade were used as a reference to evaluate 
the accuracy of the created video based point cloud. Generally, 

a significant reduction in the video images was attained from 

around 1000 video images to an average number of 300 images 

around the church building. The tests showed an average 
accuracy of 5cm. Moreover, a high resolution still imaging is 

applied to clarify and compare the degree of details that can be 

modelled with this video resolution as shown in Fig.16.  
The second test of a monument was implemented with the same 

video resolution to a scale of 1/250. A reduction from 670 

images to only 64 images was obtained by using the proposed 

technique and resulted with an average accuracy of <5 cm with 
reference to the TLS point cloud. A comparison to a still 

imaging is also investigated to conclude about the details 
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offered by the video (Fig. 24). Accordingly, from both 

experiments, it is concluded that modelling with video imaging 

of 1920×1080 pixels is suitable for midrange accuracy 

applications like planning initial documentation, investigation, 

small scale visualization and pre-design. 

A camera self-calibration proved to be convenient to the video 
images and to take into account the tangential lens distortion. 

Strict blur removal was also preferred to have sharper images 

based on the large number of redundancy offered by video.  
Although the GSD has been less than a centimetre in all tests, 
the final point clouds showed that this accuracy level could not 

be obtained for the final 3D models. 

For future work, it is recommended to investigate the use of the 

new generation of video cameras with the 4k ability of 8Mp.  
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