ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., II-5, 275-280, 2014
http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/II-5/275/2014/
doi:10.5194/isprsannals-II-5-275-2014
© Author(s) 2014. This work is distributed
under the Creative Commons Attribution 3.0 License.
 
28 May 2014
Detection of harvested trees in forests from repeated high density airborne laser scanning
P. J. Pietrzyk1 and R. C. Lindenbergh2 1MSc Geomatics, Delft University of Technology, Delft, The Netherlands
2Dept. of Geoscience and Remote Sensing, Delft University of Technology, 2628 CN Delft, The Netherlands
Keywords: Laser scanning, LIDAR, Change detection, Segmentation, Monitoring, Forestry Abstract. Identification of harvested and fallen trees is a prerequisite for the detection and measurement of changes in forests. This paper presents a three step approach to monitor harvested and fallen trees based on direct comparison of repeated high density airborne LIDAR data. In a first step differences between data sets are obtained from a point to point comparison, such that the data can be reduced to the deviating points only. Secondly, the resulting points are clustered into spatially connected regions using region growing. Finally, individual trees are extracted from the clusters by analysing their relative proximity and by analysing geometric properties of points in the clusters. Two data sets, acquired at a four year interval and covering a forest with mainly deciduous trees, are compared. First results show that most points relating to a change can be extracted and that clustering of these with region growing enables us to efficiently separate harvested and fallen trees from the remaining trees. Grouped harvested trees could not be separated using the region growing approach due to touching crowns. Segmentation of these using spectral clustering however identified individual regions well, but the results depend mainly on the pre-defined number of clusters. Crowns of grouped trees can be therefore separated if the number of trees is known.
Conference paper (PDF, 1593 KB)


Citation: Pietrzyk, P. J. and Lindenbergh, R. C.: Detection of harvested trees in forests from repeated high density airborne laser scanning, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., II-5, 275-280, doi:10.5194/isprsannals-II-5-275-2014, 2014.

BibTeX EndNote Reference Manager XML