ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume III-1
https://doi.org/10.5194/isprs-annals-III-1-49-2016
https://doi.org/10.5194/isprs-annals-III-1-49-2016
01 Jun 2016
 | 01 Jun 2016

KERNEL MAD ALGORITHM FOR RELATIVE RADIOMETRIC NORMALIZATION

Yang Bai, Ping Tang, and Changmiao Hu

Keywords: Relative radiometric normalization, multivariate alteration detection (MAD), canonical correlation analysis (CCA), kernel version of canonical correlation analysis (KCCA)

Abstract. The multivariate alteration detection (MAD) algorithm is commonly used in relative radiometric normalization. This algorithm is based on linear canonical correlation analysis (CCA) which can analyze only linear relationships among bands. Therefore, we first introduce a new version of MAD in this study based on the established method known as kernel canonical correlation analysis (KCCA). The proposed method effectively extracts the non-linear and complex relationships among variables. We then conduct relative radiometric normalization experiments on both the linear CCA and KCCA version of the MAD algorithm with the use of Landsat-8 data of Beijing, China, and Gaofen-1(GF-1) data derived from South China. Finally, we analyze the difference between the two methods. Results show that the KCCA-based MAD can be satisfactorily applied to relative radiometric normalization, this algorithm can well describe the nonlinear relationship between multi-temporal images. This work is the first attempt to apply a KCCA-based MAD algorithm to relative radiometric normalization.