ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., III-7, 125-132, 2016
http://www.isprs-ann-photogramm-remote-sens-spatial-inf-sci.net/III-7/125/2016/
doi:10.5194/isprs-annals-III-7-125-2016
 
07 Jun 2016
CHANGE DETECTION WITH MULTI-SOURCE DEFECTIVE REMOTE SENSING IMAGES BASED ON EVIDENTIAL FUSION
Xi Chen1,2, Jing Li1,2, Yunfei Zhang1,2, and Liangliang Tao1,2 1State Key Laboratory of Earth Surface Processes and Resource Ecology, 100875 Beijing, China
2Academy of Disaster Reduction and Emergency Management , Beijing Normal University, 100875 Beijing, China
Keywords: Change Detection, Multi-source Data, Evidential Fusion, Post-classification Comparison, Landslide Abstract. Remote sensing images with clouds, shadows or stripes are usually considered as defective data which limit their application for change detection. This paper proposes a method to fuse a series of defective images as evidences for change detection. In the proposed method, post-classification comparison process is firstly performed on multi-source defective images. Then, the classification results of all the images, together with their corresponding confusion matrixes are used to calculate the Basic Belief Assignment (BBA) of each pixel. Further, based on the principle of Dempster-Shafer evidence theory, a BBA redistribution process is introduced to deal with the defective parts of multi-source data. At last, evidential fusion and decision making rules are applied on the pixel level, and the final map of change detection can be derived. The proposed method can finish change detection with data fusion and image completion in one integrated process, which makes use of the complementary and redundant information from the input images. The method is applied to a case study of landslide barrier lake formed in Aug. 3rd, 2014, with a series of multispectral images from different sensors of GF-1 satellite. Result shows that the proposed method can not only complete the defective parts of the input images, but also provide better change detection accuracy than post-classification comparison method with single pair of pre- and post-change images. Subsequent analysis indicates that high conflict degree between evidences is the main source of errors in the result. Finally, some possible reasons that result in evidence conflict on the pixel level are analysed.
Conference paper (PDF, 2605 KB)


Citation: Chen, X., Li, J., Zhang, Y., and Tao, L.: CHANGE DETECTION WITH MULTI-SOURCE DEFECTIVE REMOTE SENSING IMAGES BASED ON EVIDENTIAL FUSION, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., III-7, 125-132, doi:10.5194/isprs-annals-III-7-125-2016, 2016.

BibTeX EndNote Reference Manager XML