ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., II-3/W5, 25-31, 2015
https://doi.org/10.5194/isprsannals-II-3-W5-25-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
 
19 Aug 2015
EVALUATING VOXEL ENABLED SCALABLE INTERSECTION OF LARGE POINT CLOUDS
J. Wang1,2, R. Lindenbergh1, and M. Menenti1 1Dept. of Geoscience and Remote Sensing, Delft University of Technology Building 23, Stevinweg 1, Post Box 5048, 2628CN Delft, the Netherlands
2Key Laboratory of Quantitative Remote Sensing Information Technology Academy of Opto-Electronics, Chinese Academy of Sciences No. 9 Deng Zhuang South Road, HaiDian District, 100094 Beijing, China
Keywords: Voxel, Laser Scanning, Point Clouds, Intersection Area Abstract. Laser scanning has become a well established surveying solution for obtaining 3D geo-spatial information on objects and environment. Nowadays scanners acquire up to millions of points per second which makes point cloud huge. Laser scanning is widely applied from airborne, carborne and stable platforms, resulting in point clouds obtained at different attitudes and with different extents. Working with such different large point clouds makes the determination of their overlapping area necessary but often time consuming. In this paper, a scalable point cloud intersection determination method is presented based on voxels. The method takes two overlapping point clouds as input. It consecutively resamples the input point clouds according to a preset voxel cell size. For all non-empty cells the center of gravity of the points in contains is computed. Consecutively for those centers it is checked if they are in a voxel cell of the other point cloud. The same process is repeated after interchanging the role of the two point clouds. The quality of the results is evaluated by the distance to the pints from the other data set. Also computation time and quality of the results are compared for different voxel cell sizes. The results are demonstrated on determining he intersection between an airborne and carborne laser point clouds and show that the proposed method takes 0.10%, 0.15%, 1.26% and 14.35% of computation time compared the the classic method when using cell sizes of of 10, 8, 5 and 3 meters respectively.
Conference paper (PDF, 11853 KB)


Citation: Wang, J., Lindenbergh, R., and Menenti, M.: EVALUATING VOXEL ENABLED SCALABLE INTERSECTION OF LARGE POINT CLOUDS, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., II-3/W5, 25-31, https://doi.org/10.5194/isprsannals-II-3-W5-25-2015, 2015.

BibTeX EndNote Reference Manager XML