ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., II-5/W2, 55-60, 2013
https://doi.org/10.5194/isprsannals-II-5-W2-55-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
 
16 Oct 2013
Eigenvalue and graph-based object extraction from mobile laser scanning point clouds
M. Bremer1, V. Wichmann2, and M. Rutzinger3 1Institute of Geography, University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria
2alpS Gmbh, Centre for Climate Change Adaptation Technologies, Grabenweg 68, 6020 Innsbruck, Austria
3Institute for Interdisciplinary Mountain Research, Austrian Academy of Science, Technikerstr. 21a, 6020 Innsbruck, Austria
Keywords: Mobile laser scanning, object based point cloud analysis, eigenvalues, graph based classification Abstract. The mapping of road environments is an important task, providing important input data for a broad range of scientific disciplines. Pole-like objects, their visibility and their influence onto local light and traffic noise conditions are of particular interest for traffic safety, public health and ecological issues. Detailed knowledge can support the improvement of traffic management, noise reducing infrastructure or the planning of photovoltaic panels. Mobile Mapping Systems coupled with computer aided mapping work-flows allow an effective data acquisition and provision. We present a classification work flow focussing on pole-like objects. It uses rotation and scale invariant point and object features for classification, avoiding planar segmentation and height slicing steps. Single objects are separated by connected component and Dijkstra-path analysis. Trees and artificial objects are separated using a graph based approach considering the branching levels of the given geometries. For the focussed semantic groups, classification accuracies higher than 0.9 are achieved. This includes both the quality of object aggregation and separation, where the combination of Dijkstrapath aggregation and graph-based classification shows good results. For planar objects the classification accuracies are lowered, recommending the usage of planar segmentation for classification and subdivision issues as presented by other authors. The presented work-flow provides sufficient input data for further 3D reconstructions and tree modelling.
Conference paper (PDF, 2824 KB)


Citation: Bremer, M., Wichmann, V., and Rutzinger, M.: Eigenvalue and graph-based object extraction from mobile laser scanning point clouds, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., II-5/W2, 55-60, https://doi.org/10.5194/isprsannals-II-5-W2-55-2013, 2013.

BibTeX EndNote Reference Manager XML