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ABSTRACT:

We propose a new design for an optical coded target based on concentric circles and a position and orientation determination algorithm
optimized for high distances compared to the target size. If two ellipses are fitted on the edge pixels corresponding to the outer
and inner circles, quasi-analytical methods are known to obtain the coordinates of the projection of the circles center. We show the
limits of these methods for quasi-frontal target orientations and in presence of noise and we propose an iterative refinement algorithm
based on a geometric invariant. Next, we introduce a closed form, computationally inexpensive, solution to obtain the target position
and orientation given the projected circle center and the parameters of the outer circle projection. The viability of the approach is
demonstrated based on aerial pictures taken by an UAV from elevations between 10 to 100 m. We obtain a distance RMS below 0.25 %
under 50 m and below 1 % under 100 m with a target size of 90 cm, part of which is a deterministic bias introduced by image exposure.

1 INTRODUCTION

Optical coded targets consist in distinctive visual patterns de-
signed to be automatically detected and measured in camera im-
ages. A number of different designs have been proposed in the
literature, all of them having the following properties: i) low or
no similarity with common environmental features, ii) robust dis-
ambiguation between multiple instances, usually by means of sig-
nals encoded in the marker, iii) cheap and robust detection algo-
rithm. Some examples are shown in Figure 1. Particular atten-
tion is currently being given to square coded markers due to the
availability of powerful and ready to use augmented reality li-
braries, such as ARToolKit (Wagner et al., 2008), AprilTags (Ol-
son, 2011), and arUco (Garrido-Jurado et al., 2014). Even tough
visual targets are well studied in the literature, this field is still
fertile for research in specific applications such as camera cali-
bration, photogrammetry, robotics, augmented reality and in ma-
chine vision techniques in general.

In this work we propose a design for an optical target and a novel
detection and measuring algorithm for which the requirements
are driven by a specific application within the mapKITE project1.
In this project, a new mapping paradigm is introduced in which a
terrestrial-aerial tandem, composed by a human driven terrain ve-
hicle (TV), and an autonomous micro aerial vehicle (UAV), per-
forms the surveys, augmenting terrestrial laser range-finder data
with a aerial photography (Molina et al., 2015).

The UAV is required to autonomously follow the terrain vehicle
during mapping. Normally, the TV transmits its position to the
UAV via a radio link. However, the connection between the two
vehicles may be lost or the position of the TV might become tem-
porarily unavailable, e.g., because of GPS outages. Thus, optical
guidance is also considered. In this context, the tracking algo-
rithm must primarily exhibit a very low percentage of false posi-
tive tracks, which could catastrophically deceive guidance strate-
gies, and secondarily, a low percentage of false negative tracks,
to allow for smooth following and reduced probability of losing
the TV. The optical target is also beneficial in post-processing:

1See acknowledgments.

(a) Schneider, 1991 (b) Ahn, 2001 (c) arUco, 2014

Figure 1: Examples of fiducial targets commonly employed in
robotics and photogrammetry applications.

if the accuracy of the target center and distance measurements
is high enough, the TV position can be employed to build kine-
matic ground control point (KGCP) to be used in assisted aerial
triangulation (AAT) (Molina et al., 2016).

Our solution, depicted in Figure 2, is a multi-scale design that
makes use of a code for robust detection and multiple concentric
circles for the determination of the target center projection and of
the target orientation with respect to the camera. We prefer to use
large circles instead of relying on corner features, as it is com-
mon in square coded markers, e.g. the one in Figure 1(c), since
circle projections, ellipses on the image plane, are cheaply and
robustly detected and their defining parameters can be accurately
determined by means of closed form least-squares curve fitting.
Furthermore, while the information on the position of a corner
tend to concentrate in one single pixel as the distance increases,
the ellipse center and dimensions are embodied in the coordinates
of tents to hundreds of edge pixels, even from high distance.

This work is organized as follows: in Section 2 we introduce our
optical target design and we discuss the detection algorithm. In
Section 3 we present how the position and orientation of the tar-
get can be recovered from the outer circle projection and from the
projected circle center, which in turn is located by means of an al-
gorithm discussed in Section 4. We conclude the paper presenting
an an experimental evaluation based on simulated and real-word
data, and some directions for further accuracy improvement.
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Figure 2: The optical target used in this work. The target code is
obtained sampling on the red dashed line.

2 OPTICAL TARGET DESIGN AND DETECTION

The optical target employed in this work is depicted in Figure 2.
Its main features are: i) two large circles replace corners or point
features for relative position and orientation determination, ii) the
position of the white dots in the black ring encode a signal that
is employed for robust detection and 2D orientation determina-
tion, iii) multiple (one, in this case) replica can be superimposed
with different scales and distinguished thanks to a different target
code. This fractal design is necessary to allow at least one target
to be fully visible from low distances and it has been considered
for automated landing based on optical guidance.

In the following we summarize the main image processing steps
employed in the target detection.

2.1 Contours Detection

The first step involves isolating edges, i.e., pixels with high inten-
sity gradient. We employ the Canny detector and then we group
positive pixels to form closed contours as in (Suzuki et al., 1985).

2.2 Circles Detection

In the general case, the circular target will appear as an ellipse
once projected on the image plane. However, in our application
the nominal distance from the target and the limitations on the
allowed UAV orientations limit the perspective deformation, so
that we can select candidate targets searching for approximately
circular contours. To do so we use a computationally inexpensive,
yet very effective, test: for each contour, we compute its center
Di averaging the coordinates of the edge pixels, then we compute
the mean µi and the standard deviation σi of the distance between
each edge pixel and Di. We accept a contour if: i) µi > µMIN

and ii) σi < kµi, where µMIN and k are two parameters of the
algorithm. Note that if the i-th contour is exactly a circle, σi is
zero, while moderate values of k allow ellipsoidal contours to be
also accepted. Finally, we form clusters of concentric circles with
similar center coordinates and for each cluster we mark the circle
with largest radius as the cluster representative.

2.3 Code Test and Target Heading Determination

We test the inside of each cluster representative for the presence
of the target code. We obtain a one dimensional signal sampling
the image along the red line in Figure 2, which is defined accord-
ing to the measured center and radius of the cluster representative.
This line intersect the white dots in the black outer ring at specific
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Figure 3: Target signal test and orientation determination.

angles and the black/white alternation forms a periodic signal, as
a function of the angle. Different codes can be obtained changing
the position of the dots, allowing for multiple target tracking and
for target scale resolution in case multiple replicas are detected.
The signal obtained sampling the image is matched with the ref-
erence signal maximizing their normalized cross-correlation (see
Figure 3). The cluster representative for which the normalized
cross correlation is maximum, and exceeding a minimum thresh-
old, is selected as the final target candidate.

The target 2D orientation on the image plane is also measured:
it corresponds to the lag between reference and image signals
for which the normalized cross correlation is maximum. While
encoded signals are widely employed in optical target detection to
reject false matches and to allow for multiple target tracking, the
authors are not aware of other target designs that employ signals
to measure 2D orientation.

The target 2D orientation is a desirable output at early stages of
the tracking pipeline as a naive optical-based TV following could
be implemented employing only the information extracted so far,
e.g. target position and 2D orientation on the image plane, if an
external elevation control strategy is available.

2.4 Sub-pixel Edge Detection and Ellipse Fitting

Once the correct outer circle has been identified, we search in
the corresponding circles cluster for the inner one. Next, we fit
two preliminary ellipses on the contours corresponding to the two
concentric circles, marked in green in Figure 2. This involves
finding the parameters Q′ of the ellipse equation xTQ′x = 0,
withQ′ being a symmetric 3×3 matrix with eigenvalues λ1, λ2 >
0 and λ3 < 0, such that it best fits the coordinates of the edge pix-
els. This problem can be solved in least-square sense and a closed
form solution exists, e.g., see (Fitzgibbon et al., 1996).

The determined ellipses are then refined with sub-pixel edge de-
tection. We determine

⌈
4
√
a2 + b2

⌉
points on the ellipse, where

a and b are the ellipse major and minor axis. The number of
points is a lower bound for the ellipse perimeter. For each of
those points, we sample the original image at four locations on a
line orthogonal to the ellipse contour (see Figure 4) and we fit a
3-rd order polynomial on the obtained intensities. The inflection
point of this polynomial gives the position of the sub-pixel edge
point. Finally, we correct the sub-pixel edge points coordinates
for lens radial and tangential distortion and we repeat the ellipse
curve fitting steps employing the set of refined edge points.

At this stage we have fitted on the image two ellipses, correspond-
ing to the projection of the two concentric circle of the target, and
we have obtained the related parameters Q′o and Q′i. From now
on, we will not perform any further measurement on the image.

3 TARGET POSE DETERMINATION

In this section we discuss how the relative position and orienta-
tion of the target with respect to the camera can be recovered.
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Figure 4: Sub-pixel edge detection and ellipse fitting. The outer
ellipse major and minor axis are respectively 13.320 and 12.876
pixel long, while the contour is composed of 150 edge pixels.
The image correspond to real-world data and it is taken from a
distance of 98.6 m.

To this end, let us assume for the moment that we know very
precisely the position of the projection of the concentric circles
center. We will discuss how this can be obtained in Section 4.

In Figure 5 we have sketched the target pose determination prob-
lem: O is the optical center of the camera, C is the center of the
target, segment AB is the target diameter that is coplanar with
the y axis of the camera frame. The sketch is a projection of
the scene on the yz plane. As we have assumed, we know very
precisely the position of the projected circle center in the image
plane, C′. Moreover, we have estimated the parameters of the
ellipse Q′o, being the projection on the image plane of the tar-
get outer circle. We determine analytically the intersection of Q′o
with a line trough C′ and parallel to the y axis of the camera
frame, obtaining the points A′ and B′ in the image plane. This
points correspond to the projection of A and B.

Three viewing rays, directions in camera frame, correspond to
the three points A′, B′, and C′ and they can be determined by
pre-multiplying image point coordinates with the inverse of the
intrinsic camera calibration matrix, and then normalizing, e.g.:

~vA =
K−1A′

||K−1A′|| . (1)

Note that in general ~vA, ~vB and ~vC do not belong to the yz plane,
as it might appear from the drawing in Figure 5, where we have
drawn their projection on that plane.

Next, the angles θ1 and θ2 can be determined from the dot prod-
uct of the viewing rays:

θ1 =cos−1 (~vA · ~vC) , (2)

θ2 =cos−1 (~vB · ~vC) . (3)

We are now ready to determine the length ofOC, which is the tar-
get distance. This problem can be seen as a two-dimensional in-
stance of the well known Perspective-3-Points (P3P) problem (Fis-
chler and Bolles, 1981, Wu and Hu, 2006). A closed form solu-
tion can be obtained by applying the cosine theorem to the trian-

Figure 5: Target pose determination problem, projection on the
yz plane of the camera frame. O is the camera optical center,
C is the target center and the segment AB is the target diameter
which is coplanar to the y axis. Clearly AC = BC = r.

gles AOC, COB and AOB, i.e.,
r2 = OA

2
+OC

2 − 2OA OC cos(θ1)

r2 = OB
2
+OC

2 − 2OB OC cos(θ2)

(2r)2 = OA
2
+OB

2 − 2OA OB cos(θ1 + θ2)

, (4)

where r is the target radius and the length of the segments AC
and BC. Solving in OC yields:

OC =

√
2r sin(θ1 + θ2)√

3− 2 cos(2θ1)− 2 cos(2θ2) + cos(2(θ1 + θ2))
,

(5)

We can also determine the angle φ, which is the misalignment
of the considered target diameter AB with respect to the y axis
of the camera frame: first we determine the angles γ1 and β2,
applying the sine theorem to the triangles AOC and COB:

γ1 =sin−1

(
OC

r
sin(θ1)

)
, (6)

β2 =sin−1

(
OC

r
sin(θ2)

)
. (7)

Each equation gives two solutions, since sin(α) = sin(π − α),
yet only one couple (γ1, β2) satisfies

θ1 + γ1 + (π − γ2) = θ2 + γ2 + β2 = π. (8)

We can now determine OB, the vector ~vOB and φ:

OB = r
sin (π − β2 − θ2)

sin θ2
, (9)

~vOB = OB~vB −OC~vC , (10)

φ = tan−1(~vOB,y, ~vOB,z). (11)

The angle φ is the roll angle of the relative orientation of the target
with respect to the camera. Indeed this angle is formed by the z
axis of the camera frame and the target diameter AB, that has
been chosen to lie in the yz plane. To determine the pitch angle
θ, the procedure just discussed is repeated, this time intersecting
the ellipse Q′o with a line trough C′ and parallel to the x axis,
thus obtaining the projection of a diameter lying in the xz plane.

4 PROJECTION OF THE CIRCLE CENTER

It remains to discuss how the coordinates of the projection of C
can be determined. Note that this point is not the center of either
Q′o or Q′i, as it can be seen remembering that perspective trans-
formations do not preserve ratios between distances. We chose
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Figure 6: d(C̃′, γ,Q′o) as a function of γ for five random points
C̃′ in the neighborhood of C′. The ellipse Q′o is the outer circle
projection of a target placed a true distance of 15.56 m.

not to employ corner features to locate C′ since these would not
be sharp or visible from high distance, as it is clear from Figure 4.

One known solution to determine the image coordinates of C′ is
to employ two concentric circles, such as Qo and Qi. Once the
parameters of two ellipses have been fitted to the pixels compos-
ing the corresponding contours, a quasi-analytical solution exists
for C′: let λ be the repeated eigenvalue of Q′iQ

′−1
o , any non-

zero row of Q′−1
o −λQ′−1

i is the homogeneous coordinate of the
projected circle center. For the proof see (Kim et al., 2005).

The afore-discussed result holds only if the estimated ellipsesQ′o
and Q′i are projections of concentric circles. In other words, in
order for Q′o and Q′i to be the projections of two concentric cir-
cles, certain constraints must be satisfied by their parameters, see
again (Kim et al., 2005). So constrained estimation should be
employed to jointly fit Q′o and Q′i on the edge pixels. If this is
not the case, as in (Yang et al., 2014) and in this work, i.e, the
two parameter sets are estimated independently, geometric con-
straints between the two ellipses may not hold exactly. In prac-
tical applications this causes Q′iQ

′−1
o not to have any repeated

eigenvalue, but two very similar ones, and the non-zero rows is
Q′−1
o − λQ′−1

i being slightly different, whereas they should be
equal. This gives up to six candidates for C′. As we will show in
the following, in general these solutions are not accurate enough
for being employed in the method discussed in Section 3.

We discuss here a technique to improve the estimate of C′ ob-
tained with the Kim’s method. We first define a function d that,
for a given ellipse Q′, estimates OC as a function of the coordi-
nates of the projected circle center, as in Section 3, yet, to obtain
A′ and B′, we intersect Q′o with an arbitrary line trough C′, and
parametrized with an angle γ. Thus we have:

OC = d(C′, γ,Q′), (12)

where γ is the angle formed by the line used to intersect Q′ and
the x axis of the image plane. Note that in Section 3 we used a
vertical line, i.e., γ = π/2 to determine φ, and an horizontal one,
i.e., γ = 0, to determine θ. We would like to stress the fact that
the function d(·) is analytical.

Suppose now that we have applied the Kim’s method based on the
repeated eigenvalue of Q′iQ

′−1
o and we have obtained an initial

guess for the projection of the circle center, Ĉ′. As anticipated,
this estimate is problematic in practical cases and it is not accurate
enough to be employed for computing OC. To understand why,
consider the following reasoning: if Ĉ′ is the true projection of
the circle center, the function d(Ĉ′, γ,Q′) must return the same
value for every choice of the angle γ. In fact, if Ĉ′ is the projected
circle center, whatever line passing through Ĉ′ will intersect the
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Figure 7: Landscape of D(C̃′) for an ellipse with major and
minor axis 91.02 and 76.46 px, angle −113.81◦ and center
(379.43, 120.55). Marked points are the two candidates for the
projected circle center C′ and the solution obtained employing
the method in (Kim et al., 2005).

ellipse Q′ in two points being the projection of one diameter of
the circle and thus enabling the reasoning discussed in Section 3.
Instead, if Ĉ′ is not the projected circle center, the segment AB
is not a diameter and in general AC 6= BC 6= r. Thus, even for
subtle deviations of Ĉ′ from its true coordinates, d(Ĉ′, γ,Q′) re-
turns different distances for different values of γ. As an example,
we have chosen an ellipse Q′o corresponding to a target placed at
15.56 m and we have plotted d(C̃′, γ,Q′o) for five random points
C̃′ sampled in the close neighborhood of the true projected circle
center (σ = 0.1 pixels). See Figure 6. Variations in d(C̃′, γ,Q′o)
of the order of 0.5 m are obtained.

The aforesaid reasoning gives us a very sensitive geometric in-
variant that we can employ to improve our initial guess for C′:

D(C̃) := stdγ
[
d(C̃, γ,Q′o)

]
, (13)

C′ = argmin
C̃

{
D(C̃)

}
. (14)

Namely, for a given ellipse Q′o we search for the point C̃′ for
which the dispersion of the values of d(C̃′, γ,Q′o) is minimum.
As we know, there exist at least one point C̃′ for which D(C̃′) is
identically zero, being the true projection of the circle center.

The landscape of the function D(C̃′) is depicted in Figure 7 for
the ellipse Q′o employed in the previous example. It is imme-
diately evident that in this case there are two global minima for
D(C̃′). To see why, consider again Figure 5 and take the sym-
metry of A and B around the bisector of the angle ∠AOB: the
same projections A′ and B′ are obtained but the orientation of
the target and the projection of the circle center C′ are different.
It is not possible to discriminate between the two orientations, or
decide for one of the two attractors in Figure 7 employing only
the projection of one circle contour. However, for what concerns
target distance estimation, the existence of two projected circle
center candidates is not an issue since the same distance is as-
sociated to both points (swap θ1 and θ2 in Equation 5). A very
related problem exists in every planar target design and it is often
referred as pose ambiguity: there exist multiple target orientations
that correspond to almost indistinguishable projections in the im-
age plane, see (Schweighofer and Pinz, 2006). Solutions for this
problem involve moving to 3D targets, or in general employing
techniques other than image processing to resolve the ambiguity,
e.g., see (Wu et al., 2014, Tanaka et al., 2014).
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Figure 8: Estimate of the detection probability as a function of
the true distance from the camera.

To solve the minimization problem in Equation 14 we employ a
gradient descent search strategy with adaptive learning rate and
we initialize the search with the solution obtained with Kim’s
method. The function to be optimized is reasonably regular and
the initial guess is already close to one global optimum. Note
that the initial guess is computed employing both the inner and
the outer ellipses, in which case the solution is unique. Thus we
conjecture that in most of the cases the initial guess lies in the
attractor basin of the true projected circle center.

In this section we have presented very sensitive method to deter-
mine the coordinates of the projected circle center, which enables
the pose determination method in Section 3. We would like to
stress the fact that in the presented algorithm the only quanti-
ties that are measured on the image are the parameters of the el-
lipses Q′o and Q′i. All the other quantities are analytical or quasi-
analytical functions of these parameters. Indeed, fromQ′o andQ′i
we derive an initial guess for C′ with the Kim’s method. Then,
only Q′o is employed in the numerical minimization of D(C̃′),
yielding C′. The coordinates of C′ are finally plugged in the ex-
pressions in Section 3 to determineOC, φ and θ. So the accuracy
and precision of the pose estimation greatly depend on the pro-
cedure employed to measure Q′o and Q′o in the image, from the
edge detection to the curve fitting.

5 EXPERIMENTAL EVALUATION

In this section we evaluate the target detection algorithm based on
synthetic and real-world images. To this end, we flew with a cus-
tom octo-copter over the optical target and we acquired pictures
at relative elevations between 10 and 100 m.

We employed a Ximea MQ042MG 4 Mpx camera equipped with
16mm lenses, pointing down, which gives us a GSD of 3.5 cm
and a field of view of 70 m at 100 m elevation. The radius of the
target outer circle is 0.9 m. We determined the intrinsic camera
calibration matrix and lens distortion coefficients during a sep-
arate flight over a dedicated calibration field. To obtain ground
truth positions for the camera optical center and for the marker
center we oriented the collected frames by means of AAT.

The detection algorithm proved to be very robust: the target was
successfully detected in 1807 frames out of 2134 (84.7 %). An
estimate of the probability that the target is detected as a function
of the true distance is shown in Figure 8. Based on these em-
pirical results we argue that the detection is reliable if the target
diameter size in the image is bigger than 40 pixels, which trans-
lates, given the considered choice of camera and lenses, to a flight
elevation lower than 80 m. Moreover, a deceiving target, i.e.,
a target with the same geometry but different code, was placed
nearby. The deceiving target was selected in only 5 images, con-
firming the viability of the approach in multi-target applications.
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Figure 9: Error in distance measurement as a function of the true
distance. We have also plotted a moving average and standard
deviations computed with window size 10 m.

−22 cm −15 cm 38.41 m +2 cm +4 cm

−72 cm −16 cm 97.07 m +20 cm +68 cm

Figure 10: Effect of different exposures on the estimated dis-
tance for two frames at nominal distance of 38.41 m and 97.07
m (darker on the left, brighter on the right, original in the center).

In Figure 9 we have plotted the difference between the reference
distance, i.e., OC in Figure 5, and the one computed with the de-
scribed tracking algorithm. The red curves are windowed average
and standard deviations. It is possible to see that the algorithm
yields unbiased and very precise distance measurements up to 50
m while at higher elevation the distance measurement appears to
be biased by some deterministic effect, even thought mean error
remains below 1 % of the distance. We don’t experience a com-
parable effect in synthetic data.

One possible explanation is the following: sharp edges becomes
gradients in camera images due to lens point spread function and
blurring. The sub-pixel edge detection presented in Section 2.4
aims at recovering the precise edge location from these gradi-
ents. However, different camera exposures yield different gra-
dients, making the ellipses appear slightly bigger or smaller and
thus giving different distance estimation. An example is given in
Figure 10, where we show that if we artificially change the ex-
posure we obtain different distance estimates, depending on the
elevation. This can motivate the deterministic bias visible in Fig-
ure 9. In order to increase the distance accuracy we have to either
precisely control the exposure of each frame or have a sub-pixel
edge detector that is invariant with respect to exposure.

Other possible reasons are: i) the geometry of the photogram-
metric problem is rather weak as the flight involved a climb and a
descent always pointing the same area. It is possible that the ob-
tained reference positions from AAT are not sufficiently accurate.
Unfortunately, camera positions uncertainties are not provided by
the commercial software used for image orientation; ii) the intrin-
sic camera calibration is not constant and can change because of
temperature, vibrations and other effects. It is possible that some
distortion between reference positions and estimated target dis-
tance is due to slight variations in the camera calibration.

In Figure 11 we have plotted the φ angle estimation error for syn-
thetic images obtained rendering the target as it would be seen
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Figure 11: Error in φ measurement on synthetic images.

from random camera positions and orientations. It is possible to
see that while the estimates are unbiased, the error standard devi-
ation is quite high even at low distances. This is expected as the
marker distance is 10 to 50 times bigger than the marker radius.

6 CONCLUSIONS AND FUTURE WORK

In this work we have introduced a novel optical target design de-
veloped with the goal of determining with high accuracy its center
and its distance from UAV-based mapping elevations. An experi-
mental evaluation based on real-world data has show remarkable
accuracy and has shown that further improvements can be ob-
tained correcting for the exposure induced bias.

The presented position and orientation determination algorithm
works on the estimated parameters of the two ellipses correspond-
ing to the outer and inner circles in the marker. These parameters
are robustly estimated in least-squares sense from a set of sub-
pixel edge points. This step is crucial for the accuracy of the
distance and orientation measurements, as no other quantities are
measured on the image. One direct way to improve this step is
the following: at the present stage, the two ellipses are estimated
independently. This does not exploit the fact that they are the
projection of two concentric circles. The curve fitting problem
can be reformulated so that the constraints existing between the
ellipse parameters are kept into account during estimation. More-
over, the effects of varying exposure on the edge positions on the
image has to be investigated as biases might exist in the employed
sub-pixel detection method.

After the two ellipses are determined, the projection of the circle
center is estimated numerically minimizing an analytical non lin-
ear function of the outer ellipse parameters. Two attractor basins,
and thus two candidates for the circle center projection, exist
for this function. These two candidates correspond to two pos-
sible orientations for the target. The orientation ambiguity can be
solved employing the second ellipse. We argue that it should be
possible to obtain the coordinates of the two candidates in closed
form as a function of the outer ellipse equation only. This would
remove the need for the numerical minimization.

After the projected circle center coordinates have been determined,
the distance and the orientation of the target are determined an-
alytically. A error propagation analysis has to be performed to
provide confidence interval for these quantities as a function of
the uncertainty on ellipse parameters, which comes from least-
squares curve fitting, and as a function of the intrinsic camera
calibration parameters.
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