
Figure 2. (a) Early flowering stage; green & erect ear  

(Miller, 1992) (b) Late flowering stage; brown 

and bent ear (Knapton, 2016). 
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ABSTRACT: 

The use of Light Detection and Ranging (LiDAR) to study agricultural crop traits is becoming popular. Wheat plant traits such as crop 

height, biomass fractions and plant population are of interest to agronomists and biologists for the assessment of a genotype's 

performance in the environment. Among these performance indicators, plant population in the field is still widely estimated through 

manual counting which is a tedious and labour intensive task. The goal of this study is to explore the suitability of LiDAR observations 

to automate the counting process by the individual detection of wheat ears in the agricultural field. However, this is a challenging task 

owing to the random cropping pattern and noisy returns present in the point cloud. The goal is achieved by first segmenting the 3D 

point cloud followed by the classification of segments into ears and non-ears. In this study, two segmentation techniques: a) voxel-

based segmentation and b) mean shift segmentation were adapted to suit the segmentation of plant point clouds. An ear classification 

strategy was developed to distinguish the ear segments from leaves and stems. Finally, the ears extracted by the automatic methods 

were compared with reference ear segments prepared by manual segmentation. Both the methods had an average detection rate of 85%, 

aggregated over different flowering stages. The voxel-based approach performed well for late flowering stages (wheat crops aged 210 

days or more) with a mean percentage accuracy of 94% and takes less than 20 seconds to process 50,000 points with an average point 

density of 16 points/cm2. Meanwhile, the mean shift approach showed comparatively better counting accuracy of 95% for early 

flowering stage (crops aged below 225 days) and takes approximately 4 minutes to process 50,000 points.  

1. INTRODUCTION

i. Background

LiDAR (Light Detection And Ranging) or laser scanning 

technology has been identified to hold high potential for meeting 

the demands of next generation phenotyping (Lin, 2015). This is 

attributed to the availability of LiDAR systems with small 

footprint and high pulse emission frequency and their capability 

to provide high-throughput plant traits. These systems provide 

robust data in varied illumination conditions and effective 

reconstruction of the in-field 3D crop architecture. 

Understandably, the use of laser scanners, both stationary and 

robot-mounted scanners, for field crop monitoring is becoming 

common for crop-height measurement and biomass estimation 

(Garrido et al., 2015; Hofle, 2014; Koenig et al., 2015). However, 

these applications have not yet exploited the full potential of 

LiDAR data i.e. 3D point clouds. It could be extended to plant 

population estimation.  

Figure 1. A sample 3D point cloud acquired over a wheat plot. 

The random spacing between plants, irregular 

orientation of the ears and noisy air returns make 

individual ear detection a challenge. 

The number of wheat ears per unit area, which is an indication of 

the plant population, can be obtained by manual, semi-automated 

and automated techniques. Even though it is favorable to 

incorporate automatic counting of wheat ears, it is a challenging 

task due to the complex crop architecture with close plant spacing 

and high extent of overlap (LemnaTec, 2015) as can be seen in 

Figure 1. Moreover, the automatic technique should be able to 

handle the changing size and orientation of the wheat ears with 

the developmental stage of the plant as shown in Figure 2.  

ii. Related Work

Few automated image processing techniques have been proposed 

to count wheat ears using 2D images from Charge-Coupled 
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Device (CCD) cameras by applying texture-based classification 

in hybrid space (Cointault et al., 2008) or by high pass Fourier 

filtering (Journaux et al., 2010). The counting accuracy from 2D 

cameras is constrained by the illumination conditions at the time 

of image acquisition and undetected wheat ears due to overlap 

and obstruction by other plant organs. Deery et al. (2014) 

showcase the use of rasterized elevation images to count the 

number of wheat ears by applying a simple particle count 

algorithm on the segmented image. This approach does not 

perform well for fields with high crop density and overlapping 

ears.  

The use of terrestrial laser scanners to estimate wheat crop 

density was demonstrated by Lumme et al. (2008). A detailed 

methodology and validation with reference dataset was not 

presented and the authors conclude that a laser scanner mounted 

on a mobile platform could be used as a tool in precision farming. 

Saeys et al. (2009) developed a method to estimate wheat crop 

density by 3D reconstruction of an artificial canopy set-up. They 

extracted the ear layer by fitting a "thin-plate smoothing spline" 

and generated a point density image from which the approximate 

location of the ears was identified. This method was found to be 

computationally intensive due to the fitting of the spline.  Also, 

the method was demonstrated on an artificial canopy, where 

overlap among the adjacent plants is minimal. 

Thus, manual counting is still widely used in practice. However, 

it is a tedious and labour intensive method and obviously cannot 

meet the needs of high-throughput phenotyping. Hence, 3D point 

clouds from LiDAR sensors could be used as an alternative for 

the automatic counting of wheat ears as they help to overcome 

the limitations of the existing methods owing to the availability 

of the depth information and reliability in all illumination 

conditions. This study presents two methods (segmentation 

followed by classification) developed to extract wheat ears from 

the LiDAR 3D point clouds. 

Point cloud segmentation may be defined as the clustering of 

points based on their properties and spatial distribution to form 

homogenous regions. In most scenarios, segmentation is an 

integral step to recognize objects in the point cloud which 

determines the amount of useful information retrieved (Wang & 

Shan, 2009). Hence, the application and the objects present in the 

point cloud should determine the choice of segmentation 

technique.  

There are two basic design mechanism to segment point clouds. 

The first approach is based on methods that have mathematical 

model assumptions or geometric reasoning such as model fitting, 

probability density estimators or region growing. Though these 

methods achieve quick results for simple scenarios, they are 

sensitive to noise and exhibit poor performance in complex 

scenarios. The other approach is based on machine learning 

algorithms trained to classify the different object types in the 

scene (Nguyen & Le, 2013). A review of various segmentation 

techniques has been presented by Vosselman et al. (2004) and 

they are categorized based on the surface being extracted. For the 

extraction of smooth surfaces, they have suggested region 

growing, scan line segmentation and connected components in 

voxel space. 

For the segmentation of wheat plant organs, literature reporting 

methods for the detection of individual trees from airborne laser 

scanner and crop detection were reviewed. Two methods that do 

not require labeled training samples and can identify irregular 

structures from dense point clouds were chosen as follows: 

• Voxel-based connected component: Voxel-based tree 

detection (Hosoi & Omasa, 2006) has been demonstrated for 

the estimation of forest parameters. Another popular 

application of voxelization of 3D point cloud is to extract 

the skeleton of trees (Bucksch et al., 2009) and plants 

(Ramamurthy et al., 2015). These works demonstrate that 

the voxel approach is adaptable to suit the object of interest.  

• Mean shift segmentation: The mean shift approach 

(Fukunaga & Hostetler, 1975) uses a non-parametric density 

estimator function to look for modes in the data. This was 

first used in computer vision by Comaniciu & Meer (2002) 

where they demonstrated the applicability of mean shift in 

image segmentation, to look for clusters in the feature space 

of images. Since then, this method has gained popularity and 

has also been demonstrated efficient on 3D point clouds. 

 Thus, these two segmentation methods were incorporated in the 

ear detection methods and their performances were compared in 

this paper. The following section describes the steps involved in 

the extraction of the wheat ears. The third section presents the 

datasets and design of the experiments used for the comparison 

of the two methods. Section 4 contains a short discussion on the 

results and the final section presents the conclusion and future 

works. 

2. METHODOLOGY  

The procedure to extract the wheat ears from the point cloud 

involves three main steps as follows: 

i. Filtering of noisy points 

ii. Segmentation of the point cloud 

iii. Classification of the segments  

i. Filtering of noisy points 

An initial filtering step was designed to remove the outliers 

placed either high above the plant canopy or too low below the 

ground level. The next step was designed to deal with the points 

floating around the objects in the scene that are "air returns" or 

"ghost returns" owing to the mixed edge effect. The mixed-edge 

effect occurs when a laser beam is intercepted by the edge of an 

object (Van Genchten et al., 2008). The beam splits and thus two 

signals reflected by two different objects are sent back. The 

receiver records an averaged distance between the two received 

signals and stores it as a point, which does not actually exist. In 

our case, the presence of "ghost returns" is expected due to the 

mixed-edge effect owing to the beam divergence varying with 

range and the densely occurring leaves, ears and soil particles. 

These "ghost return" points surrounding the objects were 

removed in the first step of the segmentation process. This 

removal was carried out based on the neighboring point density, 

and was handled in different ways for the two short-listed 

segmentation methods. 

ii. Segmentation 

The following two segmentation techniques were adapted to 

identify and remove the air returns due to multi-edge effect. The 
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ear-classification procedure that was developed as a part of this 

study was applied on the segmentation output. 

A. Voxel-based connected component 

In this approach, the point cloud is split into equal sized voxel-

cubes and the number of points within each voxel-cube is 

calculated. Based on the point density and the objects being  

Table 1 User-defined parameters used in voxel-based 

segmentation 

studied, only the voxels with number of points above a threshold 

value are considered for further processing. This approach is 

suitable to delineate individual plants in the canopy layer by 

removing overlapping points from adjacent plants and segment 

the ears by using a connected component analysis. The following 

steps were carried out in Matlab to segment the input point cloud 

as shown in Figure 3 and the user-defined parameters are 

explained in Table 1. 

a. Voxel definition: A voxel coordinate system is defined for 

the point cloud with equal sided voxels and origin at (Xvox, 

Yvox, Zvox) = (0,0,0). The position of each point in the voxel 

space was calculated.  

b. Voxel-based thinning: For each voxel, the number of 

points inside the voxel is counted. For further processing, 

only the voxels which contain more than one point and 

which have at least one direct neighbor that contain more 

than a user-defined minimum number of points were 

selected. This thinning process ensures only voxels that 

belong to plant organs with high point density are selected 

for further processing. 

c. Connected components analysis: On the voxels selected 

from the thinning process, a connected components analysis 

was performed. This clusters points belonging to a single 

object and assign a unique segment number to it. 

d. Second iteration of thinning and segmentation: In areas 

of high overlap, the objects appear connected and result in 

two or more ears being clustered together as a single 

segment. In order to address these cases of under-

segmentation, a second iteration of point cloud thinning 

followed by connected components segmentation is carried 

out with half of the original voxel size thinning threshold. 

 

Figure 3 Flow-chart depicting the steps involved in the voxel-

based connected components segmentation. 

B. Mean shift segmentation  

Mean shift segmentation method, which is point based uses a 

probability density estimator function to search for modes in the 

data and cluster the points that fall within function for the kernel 

bandwidth. The only user-defined parameter is the kernel 

bandwidth that is defined based on the characteristics of the 

object being segmented (Melzer, 2007). The following steps as 

shown in Figure 4 were carried out:  

a. Filtering:  The points hovering over the canopy and 

belonging to the stem region were removed based on point 

density. For each point, the number of neighbors within an 

imaginary 3D cylindrical neighborhood of (diameter = 3 cm, 

height = 6 cm) is calculated. Only points with more than 30 

neighbors in this cylindrical neighborhood are used in 

further processing.   

The dimension of the cylindrical neighborhood was decided 

based on a trial and error method which helped to identify 

the ideal dimensions and the range of neighboring density 

within which wheat ears can be approximately identified. 

An analysis of manually extracted ear segments showed that 

a wheat ear contains at least 30 points and thus, the threshold 

of 30 neighbors was used. 

b. Connected components:  Next, a connected components 

analysis was performed on the remaining point cloud to 

identify under-segmented blobs of connected points. This 

rough connected component step based on proximity and 

neighborhood definitions reduces the processing time for 

mean shift segmentation. 

User-

defined 

Parameter 

Definition 

voxel-side • Length of the side of voxel cubes (1 cm 

was used in this study); 

• Should be fixed according to the average 

spacing between the plants in the field. 

thinning-

threshold 

• Threshold for points removal for voxel-

based thinning (threshold of 2 points for 

voxel-side = 1cm) 

• Should be fixed depending on the size of 

the voxels; a larger threshold should be 

used for bigger voxel sizes. 

small-

segment-

threshold 

• Threshold for removing small segments 

(the minimum number of points per 

segment to be considered as ear segment) 

• The average number of points per ear was 

always found to be higher than 30. Hence, 

segments with less than 30 points could 

be considered as non-ear segments. 

However, a threshold of 15 was used so 

as to consider the thinning of the point 

cloud. 
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c. Segmentation: For each component, mean shift 

segmentation was carried out using the (X, Y, Z) 

coordinates with the help of existing software from ITC, 

Enschede. The (X, Y, Z) coordinates of the points were used 

 

Figure 4 Work-flow involved in mean shift segmentation 

illustrated with a sample point cloud. 

as input parameters in the algorithm. The kernel bandwidths 

were selected as X = Y < Z following a prolate spheroid, to 

approximate the average size and shape of a wheat ear. 

Table 2 User-defined parameters used in mean shift 

segmentation 

iii. Classification of Segments 

After segmenting the point cloud using either the mean shift 

method or the voxel-based method, we are left with unlabeled 

segments that could be ear, leaf or stem. Hence, the following 

strategy was developed to distinguish the ear segments and the 

parameters used are listed in Table 3. 

a. Top-most segment selection: Since the wheat ear is present 

at the top of the canopy, the first step was to extract the top-

most segments in the segment-space. These top segments 

were labeled as ears. For the segments below, the extent of 

overlap with top ear segment is calculated. If the overlap 

percentage is above a certain value, say 50%, then the 

segment is assumed to be directly below an ear segment and 

permanently labeled as a non-ear segment. 

In some scenarios where the ears are bent and overlapping, 

as highlighted in the green box in Figure 5 (a), the ear 

segments from the shorter plant initially tend to get 

mislabeled as non-ears. However, reconsidering these 

segments based on the extent of their overlap with the top-

most segments ensures that they are correctly relabeled as 

ear segments as shown in the green box in Figure 5 (b). 

 

 

Figure 5 Example to illustrate the steps involved in ear 

classification. Ear segments are displayed in red while 

the non-ear segments are displayed in blue (a) Ear 

segments identified by searching for the top-most 

segment in segment space. The green box highlights a 

case of mislabeling due to overlap. (b) Relabeling non-

ear segments depending on extent of overlap with the 

segments above. The orange box focuses on a case of 

mislabeled non-ear segments. (c) Final segment labels 

assigned based on height thresholding selected by 

Otsu's method which identifies the trough between two 

distinct peaks in a histogram. 

Table 3 Parameters used for the ear classification 

Parameters  Definition 

overlap-

percentage 

Percentage of overlap between voxels of a 

non-ear segment (from step a.) and the ear 

segments present above it. (70% was  

used) 

height-threshold The low point between the two peaks 

present in the height histogram of all ear 

segments identified till step b. The two 

peaks correspond to ear and non-ear plant 

parts and the threshold is selected by 

Otsu’s thresholding method. 

User-

defined 

Parameter 

Definition 

kernel 

bandwidth 

(X, Y, Z) 

• Parameters needed to estimate the 

mean shift vector for clustering in 

X,Y and Z dimensions (X,Y,Z) = 

(1cm,1cm,2cm); 

• Should be fixed according to the 

average spacing between the plants 

in the field. 

small-

segment-

threshold 

• Threshold for removing small 

segments (the minimum number of 

points per segment to be considered 

as ear segment) 
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Figure 6 Height histogram showing the two distinct peaks 

between the ear and non-ear segments. The line at 

0.727 m denotes the threshold chosen from Otsu's 

thresholding. 

b. Height Thresholding:  After the above steps, some of the 

non-ear segments might still be wrongly labeled as ear (an 

example as shown in the orange box in Figure 5 (b)). On 

analyzing the height histogram (Figure 6) of the segments 

labeled as ears, two distinct peaks could be identified; one 

peak corresponding to the ear segments and the other one to 

the non-ear segments. This is because there are always more 

points describing the ear segments since they are present at 

the top of the canopy. Hence, in most cases, they are not 

overshadowed by other plant parts. 

Hence, identifying the trough between the two peaks of the height 

histogram will aid in correct labelling of the ear segments. This 

height threshold is selected using Otsu's threshold selection 

method (Otsu, 1979) for histograms. The segments that lie below 

this height threshold but were classified as ear in the previous 

steps are reclassified as non-ear segments. No changes are made 

to the labels of the segments above this height threshold. The 

orange boxes in Figure 5 (b, c) highlight a mislabeled ear segment 

being corrected in the thresholding step. 

3. EXPERIMENTAL RESULTS 

i. Datasets 

The laser scanning survey was conducted on three micro-plots, 

roughly of size 10 m x 2 m, in Gréoux, France, by Arvalis (A 

technical institute specialized in cereals) and INRA (National 

Agricultural Research Institute). Three plots sown with three 

different varieties of wheat on 29 October 2015 and subject to 

different irrigation treatments were selected for the survey. In 

order to have a time series, the survey was conducted on three 

different dates with the crops aged 194 days, 209 days and 225 

days (May 10; May 25; June 10, 2016 respectively), each 15 days 

apart, on the same micro-plots. 

The datasets were acquired with a SICK LMS 400 LiDAR (SICK 

Germany, 2007) sensor mounted on an unmanned ground vehicle 

(UGV), with nadir looking. This time of flight laser scanner has 

a scanning frequency of up to 500 Hz with an operating range of 

0.7 m to 3 m and a systematic error of ± 4 mm. The scanner uses 

visible red light at 650 nm as its light source. Along with the 

LiDAR observations, wheat ear density estimates from manual 

counting in the field were also provided. To check the 

segmentation accuracy, reference wheat ear segments were 

extracted and labeled manually using CloudCompare. The 

datasets provided were acquired from a height of 2.1 m above the 

ground and had a point density of 16 pts/cm2. 

ii. Design of the accuracy assessment 

From the point clouds acquired on the three crop developmental 

stages, i.e. over crops of age 194, 209 and 225 days, a subset 

corresponding to the same area was taken from the three plots. 

From these 9 subsets, ear segments were manually segmented 

and labeled by 6 operators using CloudCompare. These manual 

segments were used to evaluate the correctness and completeness 

measures of the two methods (shown in Table 6). In order to 

check the variability between the operators, one common dataset 

(crops of age 225 days from Plot A) was provided to them. Table 

4 shows the number of ears identified by different operators for 

the same subset.  

Table 4 Variability among different operators in manually 

extracting the ear segments. The subjectiveness of 

manual segmentation and difficulty to distinctly 

identify ear segments for humans is observed. 

Operator ID A B C D E F 

Count 27 19 17 19 14 22 

 

In addition to these manual labels, reference ear density for each 

plot was made available from manual counting in the field. This 

was used to calculate the Root Mean Square Error (RMSE) and 

Mean Absolute Percentage Error (MAPE) shown in Table 5. 

iii. Ear detection results 

a. Voxel-based ear detection 

The thinning of point clouds in the voxel-based segmentation 

results in segments with much lower number of points as 

compared to the mean shift segmentation. From Figure 7 (b), it is 

seen that most of the noisy points surrounding the ears in the 

original point cloud have been removed. This results however in 

the removal of few ear points as well. This ensures that the ear 

segments are distinctly identified even in regions of overlap.  

 

Figure 7 Voxel-based ear detection results. The size of the ears is 

reduced due to point cloud thinning (a) Raw point 

cloud, color coded based on height value. (b) Voxel-

based segmentation results with each segment 

displayed using a random color (c) Ear classification 

where the red segments are the extracted ears (crops of 

age 225 days). 
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In Figure 7 (c), we see the finally extracted ear segments in red, 

while the non-ear segments are displayed in blue. It is noticed 

that the voxel-based method does not retain the size of the 

original ear and hence if used to estimate the size of the wheat 

ear, it will lead to underestimation. Thus, the thinning threshold 

should be reconsidered if the size of the wheat ear is needed for 

the study. However, for plant population estimation the size of 

the ear segments is not a concern. 

b. Mean shift ear detection  

The segmentation results from the mean shift segmentation are 

representative of the raw point cloud i.e. the segments are not 

thinned and the size of the segments is retained. From Figure 8 

(b), we notice that the segments retain the majority of the points 

from the raw point cloud and hence are mostly noisy. Thus, the 

mean shift based ear detection method can be directly extended 

to applications such as ear size estimation, without severe 

underestimation. 

 

 

Figure 8 Mean shift-based ear detection results. The size of the 

ears is retained (a) Raw point cloud, color coded based 

on height value (b) Mean shift-based segmentation 

results with each segment displayed with a random 

color (c) Ear classification where the red segments are 

the extracted ears (crops of age 225 days). 

iv. Accuracy 

The fitness of the two ear-detection methods was evaluated by 

comparing the number of ears observed by the automated 

methods with the reference dataset prepared by manual 

extraction. The following error metrics were used to evaluate the 

error associated with the detection of number of wheat ears per 

plot. 

RMSE: The ear detection method being evaluated might produce 

good estimates for a particular plot while returning poor 

estimates for another one. Therefore, RMSE was chosen to 

represent the collective error associated with the ear count over 

different plots and plant developmental stages as it is sensitive to 

outliers (Chai & Draxler, 2014). 

𝑅𝑀𝑆𝐸 =

√∑(𝐸𝑎𝑟𝑑𝑒𝑡 − 𝐸𝑎𝑟𝑟𝑒𝑓)
2

𝑁
 

where, 

𝐸𝑎𝑟𝑑𝑒𝑡 = Number of ears detected by the automatic method 

𝐸𝑎𝑟𝑟𝑒𝑓 = Number of ears identified by manual counting 

N = Number of datasets used in the evaluation 

 

MAPE: This gives a measure of the overall performance of the 

ear detection algorithm by providing an averaged absolute 

precision in terms of percentage. The MAPE provides an estimate 

that is independent of the spatial extent of the plot. Hence, using 

the MAPE in combination with RMSE gives an overall 

understanding of the performance of the algorithm across 

different plots. 

𝑀𝐴𝑃𝐸 = 100 
1

𝑁
∑ |

𝐸𝑎𝑟𝑑𝑒𝑡 − 𝐸𝑎𝑟𝑟𝑒𝑓

𝐸𝑎𝑟𝑟𝑒𝑓
|  

Table 5 Error in ear counts from the automatic detection methods 

calculated using the manual counting from the field as 

reference. 
 

Error 

Metric 

Voxel-based 

(Crop age in days) 

Mean shift 

(Crop age in days) 

194 209 225 194 209 225 

RMSE 

(ears/m2) 67.1 24.0 31.4 12.6 30.9 73.8 

MAPE (%) 17.9 5.2 8.0 3.8 6.6 19.8 

 

In addition to the RMSE and MAPE, we used two more metrics, 

Correctness and Completeness, that have been used in literature 

(Y. Wang et al., 2016; Yao et al., 2014) to evaluate the 

performance of object detection algorithms. These were 

calculated using the manually extracted segments as reference.  

Correctness =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑎𝑟𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑎𝑟𝑠 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑
 

Completeness =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑎𝑟𝑠 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑑𝑒𝑡𝑒𝑐𝑡𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑒𝑎𝑟𝑠
 

Table 6 Error in ear counts from the automatic detection 

methods calculated using the manually extracted 

segments as reference (aggregated over different plots 

and developmental stages). 

Error Metric Voxel-based Mean-shift 

Correctness (%) 80.15 60.57 

Completeness (%) 90.27 83.33 

 

The voxel-based detection method had a comparatively higher 

Correctness value of 80.15% while compared to the 60.57% of 

the mean shift method as seen in Table 6. A similar trend is 

noticed for the Completeness value for which the voxel-based 

method has a 90.27% while the mean shift has only 83.33%. This 

indicates that the voxel-based approach is more successful than 

mean shift in identifying ear segments present in the scene with 

a relatively lower number of false ear segments. 

v. Analysis of Detection Results 

The following three criteria were used to understand the 

robustness of the two ear detection methods developed in this 
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study. The accuracies stated were calculated using the manual 

counts from the field. 

• Crop developmental stage: The size and orientation of the 

wheat ear changes throughout its flowering stage (refer to 

Figure 2). Thus, using the datasets available for three 

different developmental stages of the same plot, the effect 

of crop growth on the ear detection rate was evaluated. The 

voxel-based method performs better for the crops aged 209 

days and more with an average percentage error of 5.2% and 

8.03%. Whereas, the mean shift-based approach shows 

relatively better results for the crops of age 209 days and 

more, with an average percentage error of 3.8% and 6.68% 

calculated by using the manual counts from the field as 

reference. Thus, it is concluded that the crop developmental 

stage influences the performance of the ear detection 

methods. If the age of the plants is known, then the input 

parameters should be set accordingly for optimal 

performance. 

• Wheat variety and irrigation treatment:  The variety of 

wheat and water stress are found to influence the size of the 

wheat grains (Sionit, Hellmers, & Strain, 1980). Hence, the 

ear detection methods developed were tested on three 

different varieties of wheat subject to different irrigation 

treatments. This helped to understand how the methods 

perform for plots with varying ear density. From this 

analysis, it was concluded that adaptive selection of 

segmentation parameters is advisable. 

• Effect of point density: Point density is one of the 

important factors that influence the choice of input 

parameter values and ear detection rate. Hence, to 

understand how the ear detection methods perform for 

different point densities three degraded versions of the 

datasets was created by retaining 75%, 50% and 25% of the 

original points in a random manner. It was found that the ear 

detection rates for both the methods were consistent for up 

to 75% of the original point density. However, modifying 

the parameters according to the point density improves the 

performance of the ear detection methods.  

4. DISCUSSION  

 After aggregation of the MAPE values in Table 5 over different 

plots and developmental stages, it was observed that the voxel-

based ear detection method had a lower value of 14.90% whereas 

the mean shift-based ear detection had a relatively higher value 

of 41.00%. It should be noted that before aggregation over 

different developmental stages, the voxel-based method had an 

average MAPE of 6% for crops aged 209 days and above. 

Whereas, the mean shift based method had an average MAPE of 

a very low 5% for crops of age 209 days and below. 

This detection rate is an improvement when compared to the 0.9 

correlation with 40 training points reported for image-based ear 

detection by Cointault et al. (2008). In a different study, Saeys et 

al. (2009) reported a 94% ear detection rate while using LiDAR 

observations with optimal acquisition settings. However, this was 

demonstrated on artificially constructed canopy and the proposed 

method was computationally very expensive. 

5. CONCLUSIONS AND FUTURE WORK 

In this study, we designed, analyzed and evaluated two 

approaches for the detection of wheat ears from laser scanned 3D 

point clouds. The task of ear detection was split into two steps - 

segmentation and classification of segments. For segmentation of 

the point cloud, voxel-based segmentation and mean shift 

segmentation methods were chosen and implemented. For 

classification of the segments, an ear classification methodology 

was developed taking into consideration the position of wheat 

ears in the canopy, overlap between plants and presence of 

stunted plants within the canopy.  

The performance of these two ear detection methods was then 

assessed based on developmental stage of the crop, wheat variety 

and point density.  

• The voxel-based approach performs well for late 

developmental stages with a comparatively very short 

computational time.  

• Meanwhile, the mean shift method performs well for 

different point densities and gives reliable results for 

early developmental stages and has a higher processing 

time.  

Since both the ear-detection approaches are in some way 

influenced by the point density of the dataset, the input detection 

parameters need to be adapted to achieve good count results.  

Another interesting observation was the variation in the number 

of ears extracted by different operators by manual segmentation 

which focuses on the fact that ear detection is a difficult task even 

for a human operator.  

In the following works, the use of adaptive kernel bandwidth and 

adaptive voxel sizes for segmentation of the point cloud should 

be investigated. Experiments should be done to utilize RGB 

images to improve the ear classification performance. Depending 

on the available prior knowledge regarding the crops studied and 

accuracy required for the application, one of the two ear detection 

approaches may be selected. Thus, through this study, two ear 

detection techniques that depend solely on the 3D coordinates of 

the points describing wheat ears have been developed and 

compared. 
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