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ABSTRACT: 
 
Image-based virtual reality (VR) is a virtual space generated with panoramic images projected onto a primitive model. In image-
based VR, realistic VR scenes can be generated with lower rendering cost, and network data can be described as relationships among 
VR scenes. The camera network data are generated manually or by an automated procedure using camera position and rotation data. 
When panoramic images are acquired in indoor environments, network data should be generated without Global Navigation Satellite 
Systems (GNSS) positioning data. Thus, we focused on image-based VR generation using a panoramic camera in indoor 
environments. We propose a methodology to automate network data generation using panoramic images for an image-based VR 
space. We verified and evaluated our methodology through five experiments in indoor environments, including a corridor, elevator 
hall, room, and stairs. We confirmed that our methodology can automatically reconstruct network data using panoramic images for 
image-based VR in indoor environments without GNSS position data. 
 

1. INTRODUCTION 

Virtual reality (VR) is a 3D virtual space in which users can 
experience a real space with 3D computer graphics using a VR 
theater or wearable devices. There are many VR applications, 
such as games, navigation, cultural site recordings, disaster 
monitoring, and infrastructure management. VR can be 
categorized a model-based VR and image-based VR. 
Model-based VR is a virtual space with a 3D model generated 
using CAD software products, and the 3D model is generated 
from point cloud data acquired via laser scanning and structure 
from motion (SfM) processing (Snavely, 2010). Model-based 
VR can represent a real space from arbitrary viewpoints. 
However, its cost is higher, because the 3D model must be 
prepared. Moreover, when 3D models with many polygons are 
used, a high rendering processing cost is incurred to reconstruct 
scenes in the model-based VR. 
Image-based VR is a virtual space generated with panoramic 
images projected onto a primitive model, such as a sphere  or a 
cube. In image-based VR, realistic VR scenes can be generated 
with lower rendering cost. However, it is not easy to measure 
geometries of objects in the VR scenes. Panoramic images can 
be generated through some approaches, such as image 
integration by post-processing or omnidirectional image 
registration in real-time inner processing in a panoramic camera. 
In particular, a panoramic camera can reduce the cost of image 
acquisition. 
Although it is impossible to reconstruct scenes from arbitrary 
viewpoints with a VR scene in image-based VR, a viewpoint 
translation can be represented with continuous VR scenes. In 
image-based VR, camera network data are described as 
relationships, such as nodes and links, among VR scenes. The 
network data are generated manually or by an automated 
procedure using camera position and rotation data. This manual 
work requires much time to link with each VR scene. On the 
other hand, when panoramic images are acquired in outdoor 
environments, network data for image-based VR can be easily 
prepared using a database of images localized on a map, GPS 

positioning data (Torii et al. 2010, Agarwal et al. 2015), and 
azimuth data taken from a magnetic sensor (Yazawa et al. 2009). 
When panoramic images are acquired in indoor environments, 
network data should be generated without Global Navigation 
Satellite Systems (GNSS) positioning data. Moreover, there are 
many scene changes in images, because the distance between 
camera and objects is smaller in indoor environments. 
Therefore, shorter distances between camera positions, such as 
submeter pitches, are better to achieve smooth translations in 
image-based VR. When indoor positioning systems can be used, 
it may be possible to generate network data automatically using 
the indoor position data. However, common indoor positioning 
systems are designed with 10 m accuracy for spatial resolution. 
Thus, camera position data management would be limited to 10 
m pitches. Moreover, corridors are difficult environments for 
image-based VR generation with indoor positioning data, 
because the multipass problems in radio propagation make the 
positioning environment in corridors unstable.  
Based on these technical issues, a new methodology is required 
to generate network data to connect the panorama images 
acquired with submeter steps in indoor environments. Therefore, 
we attempted to develop an algorithm to assist image-based VR 
network generation. In this research, we propose a methodology 
to generate network data with panoramic images. We evaluated 
the processing performance of our proposed algorithm through 
five experiments in indoor environments. 
 

2. METHODOLOGY 

Our proposed methodology consists mainly of image 
rectification, feature and corresponding point detection, 
estimation of camera translation, and network data generation, 
as shown in Figure 1. The image rectification is a horizontal 
adjustmentafter image acquisition. Although the feature and 
corresponding point detection are based on conventional feature 
matching, geometrical network constraints are applied to them 
in image combination. 
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Figure 1. Processing flow 
 
2.1 Image combination in corresponding point detection 

Generally, camera translation and rotation parameters are 
estimated using SfM processing. However, corresponding 
image detection is a practical bottleneck in camera translation 
and rotation estimation, because the number of image 
combinations increases quadratically. When n images are input, 
the number of image combinations is n × (n - 1)/2. For example, 
when 10 images are input, there will be 45 image combination 
patterns. Moreover, when we use panoramic images to 
reconstruct 3D data with SfM, the panoramic images are 
converted to centric projection images with different directions 
to reject outliers after corresponding point detection (Arth et al., 
2011). When n panoramic images are converted to centric 
projection images with eight directions, the number of 
combination images is 8n × (8n - 1)/2 patterns. For example, if 
10 images are input, the number of image combination for SfM 
would be 3160 patterns. 
We focus on omitting camera rotation parameter estimation and 
bundle adjustment in SfM. We also focus on a restriction such 
as panoramic image acquisition along a straight line or grid 
lines to reduce the number of image combinations and 
corresponding point detections. This restriction can improve 
processing time in image matching. When n images are input, 
the number of image combination would be n - 1 patterns for 
image matching. For example, when 10 images are input, the 
number of image combinations would be reduced to nine 
patterns for image matching. 
 
2.2 Feature matching 

Many descriptors for feature matching have been proposed, 
such as Features from Accelerated Segment Test (FAST) 
(Rosten et al., 2005), Speeded Up Robust Features (SURF) 
(Bay et al., 2008), Scale-invariant Feature Transform (SIFT) 
(Lowe, 2004), Binary Robust Invariant Scalable Keypoints 
(BRISK) (Leutenegger et al., 2011), Binary Robust Independent 
Elementary Features (BRIEF) (Calonder et al., 2010), Fast 
Retina Keypoint (FREAK) (Alahi et al., 2012), Oriented FAST 
and Rotated BRIEF (ORB) (Rublee et al., 2011), and, MSER 
(Maximally Stable Extremal Regions) (Obdrzalek et al., 2010). 
These descriptors have trade-offs among processing speed, 
processing precision, stability, and robustness. In our 
experiments, we used SURF to achieve both high-speed 
processing and high stability, because our algorithm may allow 
mismatching in feature matching. 
 

2.3 Camera translation estimation 

First, optical flows in each panoramic image combination are 
estimated using corresponding points obtained in feature 
matching. Next, based on image acquisition at equal intervals 
along a straight line or grid lines, the optical flows are grouped 
into four directions in the panoramic image. As shown in Figure 
2, there are characteristic optical flows in the panoramic image 
after camera translation. Thus, a camera translation is estimated 
with these characteristic optical flows. 
Median values of optical flows in each direction are used to 
estimate the translation to allow mismatching in the feature 
matching. Although it is possible to estimate absolute camera 
translation parameters through a backward intersection 
methodology with known objects, we estimated relative camera 
translation parameters in our research. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Optical flow estimation for camera translation 
estimation 

 
2.4 Network data generation 

The first camera position was defined as the origin point. 
Camera positions are defined as nodes and connecting lines 
adjacent camera positions are defined as links. Each link has a 
relative translation distance defined as one without a distance 
unit. Based on these constraints, we estimate a camera 
trajectory. When the camera trajectory shapes a straight line, 
each node is simply connected to the nearest node. When the 
camera trajectory follows a grid, each node is connected to the 
nearest node under a geometric network constraint, such as 
four-neighbors (90° angles) or eight-neighbors (45° angles). 
 

3. EXPERIMENT 

We used a panoramic camera (THETA S, RICOH) mounted on 
a tripod, as shown in Figure 3. Panoramic images were captured 
remotely with a smart phone in corridors, a room, an elevator 
hall, and stairs, as shown in Figure 4 and Table 1. We kept three 
constraints in panoramic image acquisition: equal intervals for 
camera position pitch, fixed camera directions, and fixed 
camera heights, as shown in Figure 5. We applied inner image 
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processing using a gyro sensor in the camera to generate 
horizontally rectified panoramic images. 
 

Figure 3. Panoramic camera (THETA S, RICOH) 
 

Figure 4. Experimental environments 
 

Table 1. Data sets 
Data set Camera position 

interval (average) 
The number of 
acquired images 

Corridor 1 50 cm 15 
Corridor 2 100 cm 31 
Room 60 cm 9 
Elevator hall 60 cm 27 
Stairs 100 cm 37 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Acquired panoramic images in the Elevator hall 
 

4. RESULTS 

4.1 Processing time 

Processing for image loading, feature and corresponding point 
detection (using SURF), and camera translation estimation 
required several minutes in total for each dataset using an Intel 
Core i7-U 3.30 GHz processor with MATLAB (single thread), 
as shown in Table 2. 
 

Table 2. Processing time 
 
Data set The 

number 
of 
acquired 
images 

Image 
loading 
[s] 

SURF 
[s] 

Translation 
estimation 
[s] 

Corridor 1 15 8.8 32.4 4.4
Corridor 2 31 15.3 67.8 8.0
Room 9 4.6 18.0 2.4
Elevator 
hall 

27 15.4 64.5 5.7

Stairs 37 17.5 75.7 9.1
 

 
 

Image size 14 M pixels 
(5376×2688) 

Focus 
distance 

10 cm - ∞ 

Sensor (s) 1/2.3 CMOS 
(×2) 

Weight 
 

125 g 
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4.2 Camera trajectory estimation 

Results for Corridor 1, Room, and Elevator hall were successful 
for camera translation estimation. However, camera translation 
estimation failed for Corridor 2 and stairs. 
The camera translation in Corridor 1 was correctly estimated, as 
shown in Figure 6. The X and Y axes indicate the horizontal 
camera position. The left image shows the actual camera path, 
and the right image shows our estimated result. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Camera translation estimation result, Corridor 1 (Left 
image: actual camera path, right image: our estimated result) 
 
The estimated camera translation in Corridor 2 is shown in 
Figure 7. Horizontal axes indicate estimated camera positions, 
and vertical axis indicates image identification numbers. 
Although the actual camera path was a straight line, the 
estimated path meandered around the straight line. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 7. Camera translation estimation result, Corridor 2 (Left 
image: actual camera path, right image: our estimated result) 
 
Figure 8 shows our estimated camera translation in the room. 
The X and Y axes indicate horizontal camera position.  
 
 

 
 
 
 
 
 
 
 
 
 
Figure 8. Camera translation estimation result (Room) (Left 
image: the actual camera path, right image: our estimated 
result) 
 
Figure 9 shows our estimated camera translation in the elevator 
hall. The X and Y axes indicate horizontal camera position. 
Figure 10 shows the camera network data estimated after the 
camera path estimation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9. Camera translation estimation result, Elevator hall 
(Left image: actual camera path, right image: our estimated 
result) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10. Camera network data, Elevator hall (Left image: 
estimated camera path, center image: 4-neighbor network, right 

image: 8-neighbor network) 
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Figure 11 shows our estimated camera translation for the Stairs.  
Horizontal axes indicate estimated camera positions, and the 
vertical axis indicates image identification numbers. Although 
the actual camera path was a spiral line, the estimated path 
meandered along the spiral line. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 11. Camera translation estimation result, Stairs (Left 
image: actual camera path, right image: our estimated result) 
 
4.3 Optical flow estimation 

Examples of estimated optical flows in camera translation 
estimation are shown in Figure 12. We confirmed that the 
proposed methodology can reconstruct camera translations as 
camera network data when there is continuity between 
panoramic images.  
 

Corridor 1  
 
 
 
 
 
 
 
 

Room  
 
 
 
 
 
 
 
 

Elevator 
hall 

 
 
 
 
 
 
 
 
 

Figure 12. Estimated optical flows (Corridor 1, Room, and 
Elevator hall) 

 

On the other hand, we confirmed that the proposed 
methodology fails to reconstruct camera translation precisely 
when there is low continuity between panoramic images, as 
shown in Figure 13. Continuity and estimation performance 
depend on camera distances, because our proposed 
methodology is based on feature tracking processing. The 
number of extracted features is also significant in estimating 
camera translation. Appropriate camera distances are required 
to improve the stability of camera translation estimation. 
However, it is not easy to estimate suitable camera distances 
before image acquisition, because the appropriate distances 
depend on the environment and the objects. Thus, we will 
investigate a real-time navigation and assistance approach for 
panoramic camera acquisition in future work. 
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Figure 13. Estimated optical flows (Corridor 2, and Stairs) 
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5. SUMMARY 

In this paper, we have focused on image-based VR generation 
using a panoramic camera in indoor environments. We 
proposed a methodology to automate network data generation 
using panoramic images for image-based VR spaces. We 
verified our methodology through five experiments in indoor 
environments, in corridors, an elevator hall, a room, and on 
stairs. We also evaluated the processing performance of our 
proposed algorithm in these experiments. Although the stability 
of our methodology depends on the camera position intervals 
and the number of feature points in the images, we confirmed 
that our methodology can automatically reconstruct network 
data using panoramic images for image-based VR in indoor 
environments without GNSS position data. 
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