
POLE-LIKE ROAD FURNITURE DETECTION IN SPARSE AND UNEVENLY 
DISTRIBUTED MOBILE LASER SCANNING DATA 

 
 

F. Li a,b *, M. Lehtomäki b, S. Oude Elberink a, G. Vosselman a, E. Puttonen b, A. Kukko b, J. Hyyppä b 
 

a Faculty of Geo-Information Science and Earth Observation, University of Twente, Netherlands - (f.li, s.j.oudeelberink, 
george.vosselman)@utwente.nl 

b Finnish Geospatial Research Institute, Department of Remote Sensing and Photogrammetry, P.O. Box 15, 02431 Masala, 
Finland - (matti.lehtomaki, eetu.puttonen, antero.kukko, juha.hyyppa)@fgi.fi 

 
Commission II, WG II/3 

 
 

KEY WORDS: Pole-like Road Furniture Detection, Mobile Laser Scanning, Sparse, Unevenly Distributed 
 
 
ABSTRACT: 
 
Pole-like road furniture detection received much attention due to its traffic functionality in recent years. In this paper, we 
develop a framework to detect pole-like road furniture from sparse mobile laser scanning data. The framework is carried out 
in four steps. The unorganised point cloud is first partitioned. Then above ground points are clustered and roughly classified 
after removing ground points. A slicing check in combination with cylinder masking is proposed to extract pole-like road 
furniture candidates. Pole-like road furniture are obtained after occlusion analysis in the last stage. The average completeness 
and correctness of pole-like road furniture in sparse and unevenly distributed mobile laser scanning data was above 0.83. It is 
comparable to the state of art in the field of pole-like road furniture detection in mobile laser scanning data of good quality 
and is potentially of practical use in the processing of point clouds collected by autonomous driving platforms. 
 

 

1. INTRODUCTION 
In recent years, road safety has been stressed in many 
countries. As the modernisation and urbanisation arises 
in developing countries, an increasing number of 
vehicles emerges on urban roads. In order to improve 
road safety, many measures, which include urban objects 
inventory, are adopted by governments. During urban 
objects inventory, urban objects can be counted based on 
their categories and their locations can be also recorded. 
The obtained inventory information can be used to check 
the suitability of existing road furniture or to assist the 
planning of placing road furniture. Road safety can be 
thereby enhanced by these analyses.  
 
To support urban objects inventory, high quality data is 
needed. In urban scenes, 3D data is commonly used as 
the data source for road-side objects inventory due to its 
precise recording of 3D location and geometric structure. 
With the development of sensors, mapping systems have 
become more precise in the past decades (Puente et al., 
2013). Three types of 3D laser scanning systems are 
often used to collect 3D data in outdoor scene, airborne 
laser scanning (ALS) systems, mobile laser scanning 
(MLS) systems and terrestrial laser scanning (TLS) 
systems. Compared with TLS systems, MLS systems are 
more flexible and faster when acquiring data. Compared 
to the data collected by ALS systems, MLS data are 
denser and more precise. For these reasons, MLS 
systems are widely used to collect 3D point cloud data in 
urban scenes. Autonomous driving as a popular topic has 
been widely studied not only because of its convenience 
but also its contribution to road safety. 3D urban object 
detection in sparse and unevenly distributed points (e.g. 

3D point clouds collected by Velodyne sensors) becomes 
crucial.  
 
Currently, urban objects inventory mainly relies on 
manual labelling. Manual inventory of urban objects can 
be tedious and time-consuming. Therefore, automatic 
road-side objects inventory is in urgent demand. Much 
research has been carried out in automatic urban road-
side objects inventory (Golovinskiy et al., 2009; Pu et al., 
2011; Yang et al., 2015; Lehtomäki et al., 2016; Wang et 
al., 2017; Li et al., 2017). One of the major focuses is 
pole-like road furniture detection due to their essential 
traffic functionalities. Except their traffic functionalities, 
detected pole-like road furniture can be also potentially 
used as features for autonomous driving system 
(Hofmann and Brenner, 2009) or Simultaneously 
Localisation and Mapping (SLAM) in urban scenes. 
Great progress has been achieved in pole-like road 
furniture detection using mobile laser scanning data 
(Brenner et al., 2009; Lehtomäki et al., 2010; El-
Halawany and Lichti, 2011; Cabo et al., 2014). However, 
the accuracy of detection is still modest especially in 
sparse and unevenly distributed point cloud data, which 
is crucial for 3D object detection in MLS data collected 
by autonomous driving systems. One reason is that these 
methods rely on geometric features such as eigenvalue-
based features which are not robust in sparse and 
unevenly distributed MLS data. Another reason is that 
objects behind building façades are not eliminated. 
Therefore, in this paper we propose a method to detect 
pole-like road furniture from sparse and unevenly 
distributed mobile laser scanning data. Our method does 
not rely on the point density and point distribution. It is 
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capable of detecting poles that are more distant to the 
road, and can be potentially used for pole-like road 
furniture detection in autonomous driving systems. 
 
This paper is organised as follows. Related work is 
reviewed in Section 2. Our proposed method is explained 
in Section 3. In Section 4 we test our algorithm and 
analyse the results. Finally, we draw the conclusion and 
give the outlook of our future work (Section 5). 
 

2. RELATED WORK 
As one of the focus topics in the research field of urban 
objects identification, pole-like road furniture detection 
has attracted much attention in recent years. Much 
progress has been made in this research field. A number 
of methods have been proposed to detect pole-like road 
furniture in mobile laser scanning data. Current proposed 
methods are assorted into two types, supervised learning 
and knowledge driven methods. In supervised learning 
methods distinctive features are utilised as input and 
trained to make prediction of candidates. In knowledge 
driven methods, by contrast, rules or constraints are 
defined to make predictions based on inductive 
experience or knowledge. 
 
Pole-like road furniture detection has been explored by a 
number of knowledge driven methods. Brenner et al. 
(2009) represent an early attempt to extract pole-like 
objects from MLS data. A cylindrical stack model is 
utilised to analyse the structure of measured laser points. 
Lehtomäki et al. (2010) further develop this method by 
using the scanline information of MLS data. They first 
extract short clusters of which points are in the same 
scanline. Then constraints are designed to connect these 
clusters and a similar cylinder masking is applied to 
check whether they are poles. Similar to these two 
methods, Cabo et al. (2014) develop a voxel based 
framework to detect pole-like objects from MLS data in 
urban areas. However, this framework is not able to 
distinguish trees from pole-like objects. Fukano et al. 
(2015) detect pole-like objects and trees by using 
scanline information and a slice cutting algorithm. 
However, this method strongly relies on the triangulation 
of points, which does not work in sparse and unevenly 
distributed data. Pu et al. (2011) propose a percentile 
method to detect pole-like road furniture from MLS data. 
They first remove ground points by a rough classification 
step. Then a percentile method and shape analysis are 
carried out to classify above ground components into 
detailed classes such as trees and traffic signs. Li and 
Oude Elberink (2014) optimise this framework to 
improve the detection rate of trees by additionally using 
collected multi-echo information. Huang and You (2015) 
detect pole-like road furniture in MLS data by using 
slicing, seed generation and bucket augmentation. Multi-
echo information is not adopted in this method. 
 
Eigen-based features have been adopted for pole-like 
objects detection from MLS data. Liberge et al. (2010) 
extract above ground objects by local discontinuity. 
Three types of vertical posts are detected by using 

eigenvalue features.  Another eigenvalue based method 
to extract pole-like objects is investigated by El-
Halawany and Lichti (2011). They extract points with 
high linearity and detect poles by using region growing 
to include their surrounding points. Bremer et al. (2013) 
adopt multi-scale eigenvalue features in combination 
with defined rules to detect pole-like objects from MLS 
data. Aijazi et al. (2013) segment above ground points by 
applying voxelisation and a link-chain rule. Descriptors 
of supervoxels are used to categorise segmented objects 
into five classes. Yokoyama et al. (2013) utilise the 
Laplacian filter to smooth above ground components. 
Eigenvalue features are then used to describe points with 
linearity, planarity and scattering. A designed model is 
fitted to decide whether an above ground component is a 
pole-like object. Yang et al. (2015) voxelise MLS data at 
multiple scales based on their point attributes, and define 
a set of rules to recognise objects in urban scene. A 
normalised cut algorithm is proposed to separate above 
ground points in Yu et al. (2015). They subsequently 
construct pairwise 3D shape context for a set of defined 
models to perform feature matching and recognise pole-
like road furniture in urban scenes.  
 
In contrast to knowledge driven methods, supervised 
learning method do not require defined rules or models 
to make predictions. For supervised learning methods, 
after feature extraction, it is an end-to-end process. 
Golovinskiy et al. (2009) segment above ground objects 
by using a min-cut approach and recognise urban objects 
by shape features allied with machine learning 
techniques. Weinmann et al. (2015) employ an optimal 
neighbourhood selection and SVM to semantically label 
3D urban objects which include pole-like objects. By 
using massive features and random forest, Hackel et al. 
(2016) semantically label urban scene in MLS point 
cloud. Lehtomäki et al. (2016) develop an object wise 
classification framework on basis of SVM to identity 
urban substances. 
 
The performance of pole-like road furniture detection in 
sparse and unevenly distributed MLS data is still modest, 
less than 70%. Most of methods aforementioned strongly 
depend on the point density when calculating features to 
decide whether road furniture are pole-like or not. 
Supervised learning methods need many training samples. 
In this paper, we utilise the number of slices in 
combination with cylinder masking, which are not 
related to point density and are based on generic 
knowledge, to detect pole-like road furniture from MLS 
data. Numerous training samples are not needed in our 
method. 
 

3. METHODOLOGY 
In this section, we describe a four-stage framework to 
detect pole-like road furniture from MLS data. In the first 
stage, unorganised MLS data is cut into blocks based on 
trajectory data. A rough classification is carried out to 
extract ground, building and vegetation in the following 
stage. Then the slicing in combination with cylinder 
masking is proposed to detect pole-like road furniture. 
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Features such as the number of slices which belong to 
poles, used at this stage do not require high point density 
or even point distribution. In the end, we perform 
occlusion analysis to eliminate indoor pole-like objects. 
The overview of our framework is as shown in Figure 1. 
 

 
 

Figure 1. The flow chart of pole-like road furniture 
detection 

 
3.1 Data partition 

The volume of collected MLS data can be massive. In 
order to reduce memory resource and save computation 
time, we cut the unorganised MLS data into blocks along 
the trajectory in the first stage. First, we sort trajectory 
points based on their recording time. Then the length and 
width of the blocks is defined to generate the outline of 
every data block. We use these outlines to crop 
corresponding MLS data from the unorganised dataset. 
This work is analogous to Pu et al. (2011). The length 
corresponds to the direction along the trajectory line and 
the width corresponds to the direction perpendicular to 
the trajectory line. In our paper, the defined width in 
datasets A and B 30m, and the length is defined to be 
40m and 60m respectively.  
 
3.2 Rough classification 

In this stage, we perform a rough classification to detect 
ground points, buildings and trees. First, ground points 
are extracted based on local height variance and 
trajectory recordings. Then above ground points are 
clustered by connected component analysis. Hereafter, 
buildings are detected among the above ground 
components. In the last part of this stage, we extract trees 
from above ground components. 
 

3.2.1 Ground extraction: In order to obtain above 
ground objects, ground points are first extracted and 
removed. Compared with above ground objects, there is 
small local height variance within sets of ground points. 
Normally ground points are underneath their 
corresponding trajectory locations. Based on these two 
attributes, ground points are extracted. Specifically, we 
calculate local height variance by the highest point and 
lowest point of every point’s neighbourhood. The 
neighbourhood of every point is defined to be its k 
nearest points within a certain distance. If the height 
variance is larger than an empirically defined threshold 
(e.g. 0.1m), it is labelled as a ground point. The ground 
extraction is point-wise. 
 
3.2.2 Building façade detection: First, above ground 
points are obtained by removing ground points extracted 
in our previous step and a connected component analysis 
is carried out to cluster above ground points into 
separated components (Vosselman et al., 2004). Then a 
surface growing algorithm is performed to detect planes 
from these separated above ground components. Four 
features are subsequently utilised to recognise building 
facades from above ground components. These features 
are: the area of a detected plane, the verticality of a 
detected plane, the width and height of a detected plane 
(Rutzinger et al., 2009). The verticality is the angle 
between the normal of detected plane and vertical 
direction. When all four feature values of a planar 
component exceed a threshold, the component is 
classified as a building façade.  
 
3.2.3 Tree detection: In our previous step, buildings are 
removed from the above ground components. Next, trees 
are identified. Based on multiple return information, 
trees can be extracted (Rutzinger et al., 2010). In our 
study, the percentage of points with the first return in 
above ground components is used as a feature to detect 
trees. If the percentage is smaller than a threshold, this 
component is labelled as tree. This threshold is fine tuned 
to be 0.95. We use this method whereas the other 
methods based on eigenvalue features strongly rely on 
the quality of the point cloud. 
 
3.3 Pole-like road furniture detection 

After buildings and trees are detected and removed, pole-
like road furniture are extracted from the above ground 
components in two steps The first step is to identify pole-
like road furniture candidates by using a slicing based 
method. Then the detected pole-like road furniture 
candidates are checked with cylinder masking. 
 
In order to detect pole-like road furniture, we first cut 
above ground components into horizontal slices. Then 
slices with small diameters are selected and their centre 
points are calculated. A 2D connected component 
analysis is performed on the centre points of these 
selected slices. The number of centre points in every 
connected component is checked. If the number is larger 
than a threshold, this object is labelled as pole-like road 
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furniture. The threshold is leveraged based on the height 
of slices and the length of shortest pole. 
 
After the slicing analysis, there still remain above ground 
components other than road furniture such as undetected 
trees. To eliminate these objects, two coaxial cylinders 
are constructed as shown in Figure 2. The ratio of the 
number of points inside the inner cylinder C1 and the 
number of points inside the cylinder C2 is the 
discriminative feature to decide whether these remaining 
above ground components are pole-like road furniture or 
not. This ratio with pole-like road furniture is high. In 
contrast, this ratio with trees, which have many branches, 
is smaller.  Therefore, the remaining trees can be 
eliminated. This step is similar to the cylinder masking 
described in Brenner et al. (2009) and Lehtomäki et al. 
(2010). The difference is that instead of using pole-like 
clusters retrieved from the profile information, we use 
connected slices to fit two coaxial cylinders. In this paper, 
r1 is set to be the median width of these connected slices. 
r2 is to be r1+0.5. 
 
This step does not rely on the point density and the 
evenness of point distribution. It is because we use the 
number of slices and 2D connected component analysis 
to detect slices which belong to poles. The calculation of 
number of slices and cylinder masking does not strongly 
rely on the point density and the evenness of point 
distribution. Therefore, high quality data is not needed 
for this method.  

 
 Figure 2. Cylinder masking 

 
3.4 Occlusion analysis 

In the previous step, some objects inside buildings are 
mis-detected as pole-like road furniture. One important 
clue is that they are located behind detected building 
façades. According to the relative locations between 
these segments, the trajectory and the detected building 

facades, we exclude the segments behind the building 
facades.  
 

4. EXPERIMENTAL RESULTS 
In section 4.1, two test sites are described to evaluate the 
performance and reliability of our algorithm. We analyse 
the experimental results in section 4.2. 
 
4.1 Test sites 

To evaluate the performance of our framework, two test 
sites are selected. These two datasets were collected in 
different countries. Moreover, the scanning geometry of 
these two datasets is also different. Dataset A is the Paris 
benchmark dataset, collected by the Stereopolis II system 
(IGN, 2013). It was collected by a time of flight ranging 
system and covers approximate 0.45 km of road scene. 
The point density of Dataset A ranges from 72 per square 
metre to 500 points per square metre. The ratio of the 
distance between neighbouring points along scanlines 
and the distance between neighbouring scanlines ranges 
from 0.35 to 1.0.  
 
Dataset B was collected in Espoo, the second largest city 
in Finland. It was acquired in 2009 by the ROAMER 
system, which consists of a Faro laser scanner and other 
sensors (Kukko et al., 2007; Kukko et al., 2012). A phase 
shift ranging system was adopted to collect Dataset B. It 
covers about 1.0 km of road scene. Dataset A and B were 
collected by different scanning systems with different 
scanning geometries. The point density of Dataset B 
ranges from 50 points per square metre to 250 points per 
square metre. The ratio of the distance between 
neighbouring points along scanlines and the distance 
between neighbouring scanlines ranges from 0.1 to 0.42. 
The distribution of Dataset B is strongly uneven and 
sparse. Dataset B was collected without multi-echo 
information. 
 
4.2 Results and analysis 

Experiments are carried out with these two introduced 
datasets. The aim is to detect pole-like road furniture 
higher than 0.5 metre. Experimental results are as shown 
in Figure 3 and Figure 4. We evaluate the detection result 
by computing the completeness and correctness, which is 
as provided in Table 1. The completeness of the 
detection is 0.86 and 0.80 in the test site A and test site B, 
respectively. In both test sites, 87% of all detected 
objects are pole-like road furniture. The large segments 
in the right side of Figure 3 and the left side of Figure 4 
are street lights connected to fences and trees. In our 
framework we are still able to detect connected pole-like 
road furniture such as street lights connected with fences.  
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Figure 3. Detected pole-like road furniture in Dataset A 

 

 
Figure 4. Detected pole-like road furniture in Dataset B. 

 
 

Table 1. Detection evaluation in two test sites 
Test site Test site A Test site B 
Visual inspection 147 113 
Truly detected 127 85 
Falsely detected 17 13 
Completeness 0.86 0.80 
Correctness 0.87 0.87 
 
Most of the incorrect results are from the connected 
objects. For example, in Dataset A, there are pole-like 
road furniture extremely close to building façades. In the 
left figure of Figure 5, there is a street light (red circle in 
the left figure of Figure 5) close to the building façade. A 
road sign (red circle in the right figure of Figure 5) is 
connected to building façade. The smallest distance 
between pole-like road furniture and building façade in 
Figure 5 is only 0.01m. It is difficult to extract such pole-
like road furniture, as our algorithms groups points 
within 0.5 m. In Dataset B, there are pole-like road 
furniture connected with other objects (as indicated in the 
red cropped area of Figure 6). When we cut them into 
slices, these slices of poles are still connected with each 
other unless we set the distance for connected component 
analysis to be very small. Small distance for connected 
components analysis nevertheless leads to fragments. 
Therefore, trading-off the parameters of connected 
component analysis is insufficient to detect these poles. 
Another case is that trees, building pillars and 
pedestrians are mis-detected as pole-like road furniture. 
There is a tree with a few branches in Dataset B (as 

shown in the right figure of Figure 6) mis-detected as 
pole-like road furniture. A few partially scanned 
pedestrians in both test sites are also mis-detected as 
objects of interest. The reason for falsely classifying 
pillars and pedestrians as pole-like road furniture is that 
we only use the width and the ratio as features to 
eliminate them. Trees with few branches are not detected 
correctly. It is because our method eliminate trees based 
on the ratio of multi-echo points and the high ratio value 
in the cylinder masking. There are not sufficient points 
with multiple counts in such trees and the ratio value is 
high in the cylinder masking. These features are not 
enough to make these bare trees, partially scanned 
pedestrians and building pillars discernible. 
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Figure 5. Undetected pole-like road furniture in Dataset 

A. 
 

     
Figure 6. Undetected pole-like road furniture and mis-

detected pole-like road furniture in Dataset B 
 
Compared to the method presented in Lehtomäki et al. 
(2010), we are able to eliminate trees and retain these 
pole-like road furniture with traffic function. The 
detection rate of our method was 80% and correctness 
was 87%, while in the same dataset their detection rate 
was 69.7% and correctness was 86.7%. The detection 
rate is significantly improved. It is noted that the 
reference of earlier work contained also other than road 
furniture, such as tree trunks. Compared to our result, 
trees and objects behind facades are not eliminated in the 
study by Cabo et al. (2014). Compared with the work of 
Li et al. (2014), our method is able to exclude false 
positively detected pole-like objects inside building. 
Wang et al. (2017) have achieved pole-like road furniture 
detection with high accuracy, approximate 95%. This, 
however, required high point density and point cloud of 
good quality. Two laser scanners are used to collect their 
experimental datasets. Only one scanner is used to 
collect data in our test dataset.  Point repetition frequency 
strongly affects the point density. Normally higher point 
repetition frequency leads to higher point density. Point 
repetition frequency is 1333 kHz in Wang et al. (2017).  
In Yang et al. (2016), the used point repetition frequency 
is 1100 kHz. Our used point repetition is much lower, 

about 120kHz. Point density in test site B ranges from 50 
points per square metre to 250 points per square metre.  
The point density is considerably higher (1500 points per 
square metre) in Wang et al. (2017). The mirror 
frequency has a significant effect on the evenness of 
point distribution. The higher mirror frequency, the more 
even point distribution. The mirror frequency of laser 
scanning collecting data is above 70 Hz in Wang et al. 
(2017). Compared with their datasets, the point clouds 
used in our experiment are of lesser quality, collected at 
the mirror frequency of 30 Hz. 
 

5. CONCLUSION AND FUTURE WORK 

To conclude, our method is stable and performs 
constantly well on two different datasets representing 
different scanning geometries of mobile laser scanning 
system. The completeness and correctness of the 
detection were 0.86 and 0.87, 0.80 and 0.87 in the test 
sites A and B, respectively. Features used in this method 
do not rely on the high point density or evenly distributed 
points. This method works well in sparse and unevenly 
distributed mobile laser scanning data. Our algorithm can 
potentially be of practical use in the pole-like road 
furniture extraction in sparse point clouds. An example 
of such sparse data is MLS data collected using 
Velodyne laser scanners, also used in autonomously 
driving vehicles. However, it is still difficult to separate 
pole-like road furniture connected to other objects such 
as trees and building façades. The use of imagery or 
multispectral LiDAR could further help in distinguishing 
between the objects i.e. a pole close to a facade should be 
detectable even with a single channel intensity when 
there is a large enough intensity gradient between the 
two. However, the use of colour information may lead to 
over-segmentation of single objects. How to separate 
objects and avoid over-segmentation by adding colour 
information remains to be explored in the future.  
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