ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume IV-2
https://doi.org/10.5194/isprs-annals-IV-2-201-2018
https://doi.org/10.5194/isprs-annals-IV-2-201-2018
28 May 2018
 | 28 May 2018

AUTOMATIC SPATIO-TEMPORAL FLOW VELOCITY MEASUREMENT IN SMALL RIVERS USING THERMAL IMAGE SEQUENCES

D. Lin, A. Eltner, H. Sardemann, and H.-G. Maas

Keywords: Spatio-temporal flow velocity fields, thermal images, calibration, feature tracking, PIV, PTV

Abstract. An automatic spatio-temporal flow velocity measurement approach, using an uncooled thermal camera, is proposed in this paper. The basic principle of the method is to track visible thermal features at the water surface in thermal camera image sequences. Radiometric and geometric calibrations are firstly implemented to remove vignetting effects in thermal imagery and to get the interior orientation parameters of the camera. An object-based unsupervised classification approach is then applied to detect the interest regions for data referencing and thermal feature tracking. Subsequently, GCPs are extracted to orient the river image sequences and local hot points are identified as tracking features. Afterwards, accurate dense tracking outputs are obtained using pyramidal Lucas-Kanade method. To validate the accuracy potential of the method, measurements obtained from thermal feature tracking are compared with reference measurements taken by a propeller gauge. Results show a great potential of automatic flow velocity measurement in small rivers using imagery from a thermal camera.