ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2, 279-286, 2018
https://doi.org/10.5194/isprs-annals-IV-2-279-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
 
28 May 2018
LAKE ICE DETECTION IN LOW-RESOLUTION OPTICAL SATELLITE IMAGES
M. Tom1, U. Kälin1, M. Sütterlin2, E. Baltsavias1, and K. Schindler1 1Photogrammetry and Remote Sensing Group, ETH Zürich, Switzerland
2Institute of Geography, University of Bern, Switzerland
Keywords: VIIRS, MODIS, SVM, Lake Ice, Semantic Segmentation, Climate Change Abstract. Monitoring and analyzing the (decreasing) trends in lake freezing provides important information for climate research. Multi-temporal satellite images are a natural data source to survey ice on lakes. In this paper, we describe a method for lake ice monitoring, which uses low spatial resolution (250 m–1000 m) satellite images to determine whether a lake is frozen or not. We report results on four selected lakes in Switzerland: Sihl, Sils, Silvaplana and St. Moritz. These lakes have different properties regarding area, altitude, surrounding topography and freezing frequency, describing cases of medium to high difficulty. Digitized Open Street Map (OSM) lake outlines are back-projected on to the image space after generalization. As a pre-processing step, the absolute geolocation error of the lake outlines is corrected by matching the projected outlines to the images. We define the lake ice detection as a two-class (frozen, non-frozen) semantic segmentation problem. Several spectral channels of the multi-spectral satellite data are used, both reflective and emissive (thermal). Only the cloud-free (clean) pixels which lie completely inside the lake are analyzed. The most useful channels to solve the problem are selected with xgboost and visual analysis of histograms of reference data, while the classification is done with non-linear support vector machine (SVM). We show experimentally that this straight-forward approach works well with both MODIS and VIIRS satellite imagery. Moreover, we show that the algorithm produces consistent results when tested on data from multiple winters.
Conference paper (PDF, 2950 KB)

Citation: Tom, M., Kälin, U., Sütterlin, M., Baltsavias, E., and Schindler, K.: LAKE ICE DETECTION IN LOW-RESOLUTION OPTICAL SATELLITE IMAGES, ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-2, 279-286, https://doi.org/10.5194/isprs-annals-IV-2-279-2018, 2018.

BibTeX EndNote Reference Manager XML