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ABSTRACT: 

 

Unmanned aerial vehicles (UAV) are evolving as an alternative tool to acquire land tenure data. UAVs can capture geospatial data at 

high quality and resolution in a cost-effective, transparent and flexible manner, from which visible land parcel boundaries, i.e., cadastral 

boundaries are delineable. This delineation is to no extent automated, even though physical objects automatically retrievable through 

image analysis methods mark a large portion of cadastral boundaries. This study proposes (i) a methodology that automatically extracts 

and processes candidate cadastral boundary features from UAV data, and (ii) a procedure for a subsequent interactive delineation. 

Part (i) consists of two state-of-the-art computer vision methods, namely gPb contour detection and SLIC superpixels, as well as a 

classification part assigning costs to each outline according to local boundary knowledge. Part (ii) allows a user-guided delineation by 

calculating least-cost paths along previously extracted and weighted lines. The approach is tested on visible road outlines in two UAV 

datasets from Germany. Results show that all roads can be delineated comprehensively. Compared to manual delineation, the number 

of clicks per 100 m is reduced by up to 86%, while obtaining a similar localization quality. The approach shows promising results to 

reduce the effort of manual delineation that is currently employed for indirect (cadastral) surveying.  

 

1. INTRODUCTION 

Unmanned aerial vehicles (UAVs) are rapidly developing and 

increasingly applied in remote sensing, as they fill the gap 

between ground based sampling and airborne observations. 

Numerous application fields make use of the cost-effective, 

flexible and rapid acquisition system delivering orthoimages, 

point clouds and digital surface models (DSMs) of high 

resolution (Colomina and Molina, 2014; Nex and Remondino, 

2014). 

Recently, the use of UAVs in land administration is expanding 

(Jazayeri et al., 2014; Koeva et al., 2016; Manyoky et al., 2011; 

Maurice et al., 2015): the high-resolution imagery is often used 

to visually detect and manually digitize cadastral boundaries. 

Such boundaries outline land parcels, for which additional 

information such as ownership and value are saved in a 

corresponding register (IAAO, 2015). The resulting cadastral 

map is considered crucial for a continuous and sustainable 

recording of land rights, as it allows the establishment of 

bureaucratic systems of fiscal and juridical nature and facilitates 

economic decision-making (Williamson et al., 2010). 

 

Worldwide, the land rights of over 70% of the population are 

unrecognized, wherefore innovative, affordable, reliable, 

transparent, scalable and participatory tools for fit-for-purpose 

and responsible land administration are sought (Enemark et al., 

2014). Automatically extracting visible cadastral boundaries 

from UAV data by providing a publicly available approach to edit 

and finalize those boundaries would meet this demand and 

improve current mapping procedures in terms of cost, time and 

accuracy (Luo et al., 2017). 

 

 * Corresponding author 

This study describes advancements in developing a 

corresponding approach for UAV-based mapping of visible 

cadastral boundaries. It is based on the assumption that a large 

portion of cadastral boundaries is manifested through physical 

objects such as hedges, fences, stone walls, tree lines, roads, 

walkways or waterways. Those boundaries, visible in the RGB 

as well as the DSM data, bear the potential to be extracted in part 

automatically (Zevenbergen and Bennett, 2015). The extracted 

outlines require (legal) adjudication and incorporation of local 

knowledge from human operators in order to derive final 

cadastral boundaries. 

 

In past work, a hypothetical generalized workflow for the 

automatic extraction of visible cadastral boundaries has been 

proposed (Crommelinck et al., 2016). It was derived from 89 

studies that extract physical objects related to those manifesting 

cadastral boundaries from high-resolution optical sensor data. 

The synthesized methodology consists of image segmentation, 

line extraction and contour generation (Figure 1). For image 

segmentation, globalized probability of boundary (gPb) contour 

detection was found to be applicable for an initial detection of 

visible boundaries. However, the method does not enable the 

processing of large images. Therefore, the UAV data were 

reduced in resolution, which led to a reduced localization quality 

(Crommelinck et al., 2017b). The localization quality at the 

locations of initially detected candidate boundaries is improved 

through the proceeding workflow component. For line extraction, 

simple linear iterative clustering (SLIC) superpixels applied to 

the full-resolution data were found to coincide largely with object 

boundaries in terms of completeness and correctness 

(Crommelinck et al., 2017a).  
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The aim of this study is to describe the final workflow component 

of contour generation: gPb contour detection and SLIC 

superpixels are combined with a random forest (RF) classifier 

and processed in a semi-automatic procedure that allows a 

subsequent delineation of visible boundaries. Overall, the study 

contributes to advancements in developing a methodology for 

UAV-based delineation of visible cadastral boundaries 

(Sect. 2.3). It uses RGB and DSM information and is designed 

for rural areas, in which physical objects such as roads are clearly 

visible and are anticipated to coincide with fixed cadastral 

boundaries. 

 

 

Figure 1. Sequence of a commonly applied workflow proposed 

in (Crommelinck et al., 2016). It aims to extract physical objects 

related to those manifesting cadastral boundaries from high-

resolution optical sensor data. For the first and second 

component, state-of-the-art computer vision approaches have 

been evaluated separately and determined as efficient for UAV-

based cadastral mapping (Crommelinck et al., 2017a; 

Crommelinck et al., 2017b). The third component as well as the 

overall approach is described in this paper. 

 

2. MATERIALS AND METHODS 

2.1 UAV Data 

Two rural areas in Amtsvenn and Gerleve in Germany were 

selected for this study (Table 2, Figure 7). The data were captured 

with indirect georeferencing, i.e., Ground Control Points (GCPs) 

were distributed within the field and measured with a Global 

Navigation Satellite System (GNSS). RGB orthoimages as well 

as DSMs were generated with Pix4DMapper.  

 Amtsvenn Gerleve 

UAV model GerMAP G180 DT18 PPK 

camera/focal length Ricoh GR/18.3 DT-3Bands RGB/12 

forw./sidew. overlap [%] 80/65 80/70 

GSD [m] 0.05 0.03 

extent [m] 1000 x 1000 1000 x 1000 

Table 2. Specifications of UAV data. 

 

  
(a) (b) 

Figure 7. UAV data from (a) Amtsvenn and (b) Gerleve overlaid 

with SLIC lines used for training (30%) and validation (70%). 

2.2 Image Processing Workflow 

The image processing workflow is based on the one shown in 

Figure 1. Its three components are described in Sect. 2.2.1 - 2.2.3. 

and visualized in Figure 5. Corresponding source code, with test 

data and a step-by-step guide is publically available 

(Crommelinck, 2017a). The interactive component is 

implemented in an open source GIS (Crommelinck, 2017b). 

 

2.2.1 Image Segmentation – gPb Contour Detection: 

Contour detection refers to finding closed boundaries between 

objects or segments. Globalized probability of boundary (gPb) 

contour detection refers to the processing pipeline visualized in 

Figure 2, explained in this section and based on (Arbelaez et al., 

2011). This pipeline originates from computer vision and aims to 

find closed boundaries between objects or segments in an image. 

This is achieved through combining edge detection and 

hierarchical image segmentation, while integrating image 

information on texture, color and brightness on both a local and 

a global scale. 

 

In a first step, oriented gradient operators for brightness, color 

and texture are calculated on two halves of differently scaled 

discs to obtain local image information. The cues are merged 

based on a logistic regression classifier resulting in a posterior 

probability of a boundary, i.e., an edge strength per pixel. The 

global image information is obtained through spectral clustering 

detecting the most salient edges only. This is done by examining 

a radius of pixels around a target pixel in terms of oriented 

gradient operators as for the local image information. The local 

and global information are combined through learning techniques 

and trained on natural images from the ‘Berkeley Segmentation 

Dataset and Benchmark’ (Arbeláez et al., 2007). By considering 

image information on different scales, relevant boundaries are 

verified, while irrelevant ones, e.g., in textured regions, are 

eliminated. This is referred to as global optimization in the 

following. In the second step, initial regions are formed from the 

oriented contour signal provided by a contour detector through 

oriented watershed transformation. Subsequently, a hierarchical 

segmentation is performed through weighting each boundary and 

their agglomerative clustering to create an ultrametric contour 

map (ucm) that defines the hierarchical segmentation. 

 

The overall result consists of (i) a contour map, in which each 

pixel is assigned a probability of being a boundary pixel, and 

(ii) a binary boundary map containing closed contours, in which 

each pixel is labeled as ‘boundary’ or ‘no boundary’. The 

approach has been shown to be applicable to UAV orthoimages 

for an initial localization of candidate object boundaries 

(Crommelinck et al., 2017b). UAV orthoimages of extents larger 

than 1000 x 1000 pixels need to be reduced in resolution, due to 

the global optimization of the original implementation. The 

localization quality of initially detected candidate boundaries is 

improved through the following workflow components that use 

the full-resolution RGB and DSM data. 

 

Figure 2. Processing pipeline of globalized probability of 

boundary (gPb) contour detection and hierarchical image 

segmentation resulting in a binary boundary map containing 

closed boundaries.  
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Figure 5. Delineation workflow combining the methods described in Sect. 2.2.1 - 2.2.3. 

 

2.2.2 Line Extraction – SLIC Superpixels: Simple linear 

iterative clustering (SLIC) superpixels originate from computer 

vision and are introduced in (Ren and Malik, 2003). Superpixels 

aim to group pixels into perceptually meaningful atomic regions 

and can therefore be located between pixel- and object-based 

approaches. The approach allows to compute image features for 

each superpixel rather than each pixel, which reduces subsequent 

processing tasks in complexity and computing time. Further, the 

boundaries of superpixels adhere well to object outlines in the 

image and can therefore be used to delineate objects (Neubert and 

Protzel, 2012). 

 

When comparing state-of-the-art superpixel approaches, SLIC 

superpixels have outperformed comparable approaches in terms 

of speed, memory efficiency, compactness and correctness of 

outlines (Csillik, 2016; Schick et al., 2012; Stutz et al., 2017). 

The approach, visualized in Figure 3, was introduced and 

extended by Achanta el al. (2010, 2012). SLIC considers image 

pixels in a 5D space, in terms of their L*a*b values of the 

CIELAB color space and their x and y coordinates. Subsequently, 

the pixels are clustered based on an adapted k-means clustering. 

The clustering considers color similarity and spatial proximity. 

SLIC implementations are widely available. This study applies 

the GRASS implementation (Kanavath and Metz, 2017). 

 

The approach has been shown to be applicable to UAV 

orthoimages of 0.05 m ground sample distance (GSD) 

(Crommelinck et al., 2017a). Further, cadastral boundaries 

demarcated through physical objects often coincide with the 

outlines of SLIC superpixels. 

 

 
Figure 3. Processing pipeline of simple linear iterative clustering 

(SLIC) resulting in agglomerated groups of pixels, i.e., 

superpixels, whose boundaries outline physical objects in the 

image. 

 

2.2.3 Contour Generation – Interactive Delineation: 

Contour generation refers to generating a vectorized and 

topologically connected network of SLIC outlines from 

Sect. 2.2.2 that surround candidate regions from Sect. 2.2.1. This 

component combines the detection quality of gPb contour 

detection with the localization quality of SLIC superpixels. This 

is realized by seeking a subset of superpixels whose collective 

boundaries correspond to contours of physical objects in the 

image.  

 

Levinshtein et al. (2012) first reformulated the problem of finding 

contour closure to identifying subsets of superpixels that align 

with physical object contours. The authors combine features such 

as distance, strength, curvature and alignment to identify edges 

for image segmentation. These features are combined by learning 

the best generic weights for their combination on a computer 

vision benchmark dataset. This approach can be related to 

perceptual grouping in which local attributes in relation to each 

other are grouped to form a more informative attribute containing 

context information (Sowmya and Trinder, 2000). By iteratively 

grouping low-level image descriptions, a higher-level structure 

of higher informative value is obtained (Iqbal and Aggarwal, 

2002). Perceptual grouping for contour closure is widely applied 

in computer vision (Estrada and Jepson, 2004; Stahl and Wang, 

2007), pattern recognition (Iqbal and Aggarwal, 2002) as well as 

in remote sensing (Turker and Kok, 2013; Yang and Wang, 

2007). The criteria for perceptual grouping are mostly based on 

the classical Gestalt cues of proximity, continuity, similarity, 

closure, symmetry, common regions and connectedness that 

originate from Lowe’s early work on perceptual grouping, in 

which a computational model for parallelism, collinearity, and 

proximity is introduced (Lowe, 1985). The attributes are mostly 

combined into a cost function that models the perceptual saliency 

of the resulting structure. 

 

These ideas are transferable to this study: Wegner et al. (2015) 

extract road networks from aerial imagery and elevation data by 

applying superpixel-based image segmentation, classifying the 

segments with a RF classifier and searching for the Dijkstra least-

cost path between segments with high likelihoods of being roads. 

Warnke and Bulatov (2017) extend this approach by optimizing 

the methodology in terms of feature selection. They investigate 

the training step by evaluating two classifiers and show that 

choosing features largely influences classification quality and 

that feature importance depends on the selected classifier. 

Similarly, García-Pedrero et al. (2017) use superpixels as 

minimum processing units, which is followed by a classification-

based agglomerating of superpixels to obtain a final segmentation 

of agricultural fields from satellite imagery. All these approaches 

consider superpixels as segments, i.e., superpixels are 

agglomerated by comparing features per segment in relation to 

its adjacent neighbors (García-Pedrero et al., 2017; Santana et al., 

2017; Yang and Rosenhahn, 2016), sometimes in combination 

with boundary information (Jiang et al., 2013; Wang et al., 2017).  

 

In this paper, the problem of finding adjacent superpixels 

belonging to one object is reformulated to finding parts of 

superpixel outlines that delineate one object: attributes are not 

calculated per superpixel, but per outline segment (Figure 4). 

They are created by splitting each superpixel outline, wherever 

outlines of three or more adjacent superpixels have a point in 

common. 19 attributes taking into account the full-resolution 

RGB and DSM, as well as the low-resolution gPb information 

are calculated per line (Table 1). Similar to the classical Gestalt 
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cues, the attributes consider the SLIC lines themselves (i.e., their 

geometry) and their spatial context (i.e., their relation to gPb lines 

or to underlying RGB and DSM rasters).  

 

Feature Description 

length [m] length per SLIC segment along the line 

ucm_rgb median of all ucm_rgb pixels within a 0.4m buffer 

around each SLIC segment 

lap_dsm median of all DSM laplacian filter values within a 
0.4m buffer around each SLIC segment 

dist_to_gPb 

[m] 

distance between SLIC segment and gPb lines 

(overall shortest distance) 
azimuth [°] horizontal angle measured clockwise from north per 

SLIC segment 
sinuosity ratio of distance between start and end point along 

SLIC segment (line length) and their direct 

Euclidean distance 
azi_gPb [°] horizontal angle measured clockwise from north per 

gPb segment closest to a SLIC segment (aims 

to indicate line parallelism/collinearity) 
r_dsm_medi median of all DSM values lying within a 0.2m buffer 

right of each SLIC segment. 

l_dsm_medi median of all DSM values lying within a 0.2m buffer 
left of each SLIC segment 

r_red_medi median of all red values lying within a 0.2m buffer 

right of each SLIC segment 
l_red_medi median of all red values lying within a 0.2m buffer 

left of each SLIC segment 

r_gre_medi median of all green values lying within a 0.2m buffer 
right of each SLIC segment 

l_gre_medi median of all green values lying within a 0.2m buffer 

left of each SLIC segment 
r_blu_medi median of all blue values lying within a 0.2m buffer 

right of each SLIC segment 

l_blu_medi median of all blue values lying within a 0.2m buffer 

left of each SLIC segment 

red_grad absolute value of difference between r_red_medi 

and l_red_medi 
green_grad absolute value of difference between r_green_medi 

and l_green_medi 

blue_grad absolute value of difference between r_blue_medi 
and l_blue_medi 

dsm_grad absolute value of difference between r_dsm_medi 

and l_dsm_medi 

Table 1. Features calculated per SLIC line segment. 

 

For training and validation, one attribute is added manually by 

labelling SLIC lines corresponding to reference object outlines as 

‘boundary’ or ‘no boundary’, respectively. The data are divided 

into 30%  for training and 70% for validation. The features shown 

in Table 1 together with the label ‘boundary’ or ‘no boundary’ 

are provided to the RF classifier to learn the combination of 

features leading to the class ‘boundary’ for the training data. The 

trained classifier then uses the features to predict for each line in 

the validation data a likelihood for each line for belonging to the 

class ‘boundary’. This boundary likelihood b is transformed to a 

cost value c as shown in the following: 

 

𝑐 [0; 1] = 1 − 𝑏 (1) 

 

where  c = cost value per SLIC line 

 b = boundary likelihood per SLIC line 

 

This cost value c in range [0; 1] is used to find the least-cost path 

between points indicated by a user. The Steiner least-cost path 

searches for the path along the SLIC lines having the lowest c, 

i.e., the highest likelihood for belonging to the class ‘boundary’. 

The points represent start-, end, and optionally middle-points of 

a boundary to be delineated. Finally, the result is displayed to the 

user providing the options to accept, smooth, edit and/or save the 

line. Smoothing is done using the Douglas-Peucker line 

simplification. This interactive component is implemented as an 

open source QGIS plugin (Crommelinck, 2017b). 

 

 
Figure 4. Processing pipeline of interactive delineation: each 

superpixel outline is split, wherever outlines of three or more 

adjacent superpixels have a point in common (visualized by line 

color). Attributes are calculated per line. They are used by a RF 

classifier to predict boundary likelihoods (visualized by line 

thickness). User-selected nodes (red points) are connected along 

the lines of highest likelihoods.  

 

2.3 Accuracy Assessment  

The methodology is designed and implemented for rural areas, in 

which the number of visible cadastral boundaries is expected to 

be higher than in urban ones. As stated above, numerous physical 

objects can manifest cadastral boundaries. For accuracy 

assessment in a metric sense, an object was sought, whose outline 

is clearly delineable. Further, automating the delineation process 

saves most time for large parcels with long and curved outlines. 

Luo et al. (2017) have shown that up to 49% of cadastral 

boundaries are demarcated by roads and conclude that deriving 

road outlines would therefore contribute significantly to 

generating cadastral boundaries. Consequently, roads are 

selected for accuracy assessment.  

 

The approach is investigated in terms of the components shown 

in Figure 5. Since the first one, i.e., ‘data pre-processing’, has 

been evaluated in previous studies (Crommelinck et al., 2017a; 

Crommelinck et al., 2017b), the accuracy assessment focuses on 

‘classification’ and the ‘interactive outlining’. The accepted 

accuracy for cadastral boundary surveying depends on local 

requirements, regulations and the accuracy of the boundaries 

themselves. Recommendations from the IAAO (2015) range 

from 0.3 m for urban areas to 2.4 m in rural areas for horizontal 

accuracy. They advise to use these measures judiciously and 

remain unclear whether this is a maximum for the accepted error 

or a standard deviation. According to Stock (1998) landowners 

require a higher accuracy (0.2 m) than authorities (0.5 m) for 

rural boundaries. Details on how this accuracy is measured are 

not provided. 

 

In this study, which is implemented in rural areas, the accepted 

accuracy is set to 0.2 m as maximum distance between 

delineation and reference data. Reference data are created 

through manually digitizing visible outlines of roads. Only those 

visible outlines whose fuzziness did not exceed the accepted 

accuracy are delineated as reference data. 

 

2.3.1 Classification Performance: How well the RF 

classifier assigns optimal costs to each SLIC line is crucial for 

the subsequent least-cost path generation. The performance is 

investigated by considering the feature importance obtained after 

applying the trained classifier on the validation dataset, as well 

as the confusion matrix and the derived correctness (Eq. 2) for 

different cost values c. Due to the analysis according to c, 

completeness is not considered: for larger c, more lines are 

detected, which makes the number of false negatives (FN) and 

thereby completeness not directly comparable across groups of 

different c. 
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correctness [0; 100] =
TP

TP + FP
 (2) 

  

where  TP = true positives 

 FP = false positives 

 

The detection quality (Figure 6a) determines, how 

comprehensively SLIC lines are detected by the RF classifier. 

This is done by calculating a buffer of radius 0.2 m around the 

reference lines. The buffer size is chosen in accordance to the pre-

defined accepted accuracy. SLIC lines are buffered with the 

smallest radius possible of 0.05 m in accordance to the GSD of 

the UAV data. SLIC lines are grouped according to boundary 

likelihoods b, transformed to a cost value c (2) in range [0; 1] at 

increments of 0.2. Each group is overlaid with the buffered 

reference data to calculate a confusion matrix and a correctness. 

 

The localization quality (Figure 6b) determines, if low c are 

assigned to segments located closer to the reference data. This is 

done by buffering the reference data with radii of 0.05, 0.1, 0.15, 

and 0.2 m. The previously buffered and grouped SLIC lines are 

reused. Each group is overlaid with the buffered reference data to 

generate a confusion matrix and to calculate the sum of TP pixels 

per buffer distance. 

 

  
(a) (b) 

Figure 6. (a) Detection quality, for which delineation data are 

buffered with 0.05 m and reference data with 0.2 m. Both are 

overlaid to calculate the number of pixels being TP, FN, TN or 

FP. (b) Localization quality, for which the reference data are 

buffered with 0.05 - 0.2 m and overlaid with the buffered 

delineation data to calculate the sum of TPs per buffer distance. 

 

2.3.2 Interactive Outlining Performance: If and to what 

extent the interactive delineation is superior to manual 

delineation is the focus of this section. This is done by defining a 

user scenario and delineating all visible road outlines once 

manually, once interactively. Metric accuracy measures are 

calculated for both datasets. The user scenario encompasses the 

guideline of using as few clicks as necessary to delineate all 

visible roads within the accepted accuracy of 0.2 m. The metric 

accuracy measures consist of the calculation of the localization 

quality as described above and the average number of required 

clicks per 100 m. 

 

3. RESULTS 

The results reveal that the assignment of c works as desired: road 

outlines are comprehensively covered by SLIC lines of low c 

values and the correctness decreases for higher c (Table 3). 

Similarly, the localisation quality mostly decreases for higher c 

,i.e., the classifier assigs low c values for a high percentage of 

lines close to the reference data (Figure 8). These values would 

vary when changing the buffer size or taking into account 

different lines for training. 

The calculated feature importance for features shown in Table 1 

reveals that higher-order features are often more valuable, i.e., a 

feature containing the gradient between green values right and 

left of the SLIC line (green_grad) is more important than a 

feature containing averaged green values underlying a SLIC line 

(l_gre_medi, r_gre_medi). DSM-related features have low 

importance (dsm_grad, lap_dsm, r_dsm_medi, l_dsm_medi), 

which can be increased by considering another physical object, 

whose outlines are stronger demarcated through height difference 

and by using relative height as a feature. gPb-related features 

(ucm_rgb, dist_to_gPb, azi_gPb) have a low importance, which 

might be caused by the low resolution of the gPb data. Tiling does 

not solve this problem, since the global optimization requires 

image information on a global scale. However, gPb contours are 

still relevant as they are used to narrow down the area of 

investigation and thus reduce processing time. The results give 

an initial estimation of feature importance, but would require 

more data to analysable in depth. 

 

  Amtsvenn Gerleve 

 SLIC line segments (N) 22,183 57,500 

 SLIC line segments [m] 37,063  72,333  
D

e
te

c
ti

o
n

 

q
u

a
li

ty
 correctness (c = 0.0 - 0.19) [%] 86 93 

correctness (c = 0.2 - 0.39) [%] 90 96 

correctness (c = 0.4 - 0.59) [%] 78 88 

correctness (c = 0.6 - 0.79) [%] 61 70 

Table 3. Classification performance: detection quality for SLIC 

lines of different cost value c compared to reference data. 

 

 

  
(a) (b) 

Figure 8. Classification performance: localization quality for 

SLIC lines of different cost values c assigned through the RF 

classification for (a) Amtsvenn and (b) Gerleve. 

 

The interactive outlining performance visualized in Figure 9 

reveals that road outlines are successfully demarcated by low c 

values generated through RF classification (a). The interactive 

delineation visualized in (b) allows to select nodes (yellow) from 

a set of nodes (red), that are automatically connected (green) 

along the SLIC lines of least cost. The interactive delineation 

saves most clicks, when delineating long and curved roads as 

shown in (c), where the interactive delineation of a line of 274 m 

length requires two clicks only. For road parts covered by 

vegetation or those having narrow or fuzzy boundaries manual 

delineation is superior (d). High gradients inside a road can cause 

the least-cost path to run along the middle of the road, which can 

be avoided by placing an additional node (yellow) along the road 

outline (e, f). The least-cost path favors less segments of high 

costs over more segments of lower costs, since the summated 

costs of the entire path are considered (g). Created outlines can 

be smoothed out through the build-in line simplification that 

transforms the initial least-cost path (blue) to a simpler path 

(green) (h). 
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In general, all visible road outlines were delineated. For 

Amtsvenn 0% and for Gerleve 5% of lines required minor 

editing, in cases, where SLIC outlines do not run along the 

desired road outline (Figure 9d). The localization quality 

(Figure 10) visualizes the portion of delineated lines located at 

different distances to the reference data. It shows that for 

Amtsvenn almost 60% and for Gerleve almost 80% of boundaries 

delineated with the interactive approach are within 10 cm of the 

reference data. These results  together with the decrease of 

required clicks, i.e., a reduction by 86% for Amtsvenn and 76% 

for Gerleve (Table 4), and the lower zoom level required for 

delineation, shows that the interactive delineation is superior in 

terms of effort to delineate visible roads from UAV data.  

 
 Amtsvenn Gerleve 

 manual interact. manual interact. 

line segments [m] 1,900 1,915 3,911 3,922 

avg. clicks per 

100m (N) 

14.2 

(100%) 

2.3 

(86%) 

21.2 

(100%) 

4.5 

(76%) 

Table 4. Interactive outlining performance: general statistics for 

the manual and the interactive delineation. 

 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g)  (h) 

Figure 9. Examples of the interactive delineation (green) along 

SLIC lines (red). The thicker a SLIC line, the lower c. 

 

 
            (a)                                     (b) 

Figure 10. Interactive outlining performance: localization quality 

for delineation for (a) Amtsvenn and (b) Gerleve. Both the 

reference and the interactively delineated data consists of lines 

that are rasterized to quantify the localization quality. 

 

4. DISCUSSION 

In general, the methodology could improve current indirect 

mapping procedures by making them more reproducible and 

efficient. However, a certain skill level of the surveyors in 

geodata processing is required as well as the presence of visible 

cadastral boundaries. With cadastral boundaries being a human 

construct, certain boundaries are not automatically detectable, 

wherefore semi-automatic approaches are required (Luo et al., 

2017). 

 

Limitations of the accuracy assessment are as follows: labelled 

training data doesn’t always coincide exactly with the reference 

data, as SLIC outlines do not perfectly match the manually 

delineated road outlines. Furthermore, some roads have fuzzy 

outlines, wherefore a certain outline is selected within the 

accepted accuracy for both the manual and the interactive 

delineation. Furthermore, manual image interpretation is prone to 

produce ambiguous results due to interpreters generalizing 

differently. These uncertainties propagate through the accuracy 

measures and would increase when considering physical objects 

of fuzzier outlines (Albrecht, 2010; García-Pedrero et al., 2017). 

Further, the percentage of roads demarcating cadastral 

boundaries, which according to Luo et al. (2017) amounts up to 

49% might be lower in certain cases. Further work should be 

conducted considering various objects in relation to real cadastral 

reference data. 

 

Future work could focus on identifying optimal features for 

classification (Genuer et al., 2010; Warnke and Bulatov, 2017). 

The optimal selection of training data could be supported by 

active learning strategies. Another focus would be to extent the 

approach to different physical objects, datasets and scenarios by 

developing a classifier transferable across scenes. However, even 

manually labelling 30% of the data before being able to apply the 

interactive delineation as done in this study, would still be 

superior in terms of effort than delineating 100% manually. 

Existing cadastral data might be used to automatically generate 
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training data. The transferability to data from aerial or satellite 

platforms could be considered to determine the degree to which 

high-resolution UVA data containing detailed 3D information is 

beneficial or required for indirect cadastral surveying. Further, 

the least-cost paths generation can be improved by scaling the 

line costs with their length to avoid the path favouring few 

segments of high cost over many segments of low costs (Figure 

9g). In addition, sharp edges in the generated least-cost path can 

be penalized to reduce outlier occurrence, as done in snake 

approaches.  

 

5. CONCLUSION 

This study contributes to developing a methodology for UAV-

based delineation of visible cadastral boundaries. This is done by 

proposing a methodology that partially automates and simplifies 

the delineation of outlines of physical objects such as roads 

demarcating cadastral boundaries. Previous work has focused on 

automatically extracting RGB image information for that 

methodology. In this paper, the methodology is extended by a 

classification and an interactive outlining part applied to RGB 

and DSM data. Furthermore, this study proposes a methodology 

to automate cadastral mapping covering all required steps after 

obtaining UAV data to generating candidate cadastral boundary 

lines.  

 

The reformulated problem of delineating physical objects from 

image data to combining line feature information with RF 

classification presented in this study, could be beneficial for 

different delineation applications. The aim of this study is to 

apply the suggested approach for cadastral mapping. In this field, 

the approach has shown promising results to reduce the effort of 

current indirect surveying approach based on manual delineation. 

Highest savings are obtained for long and curved outlines. Future 

work will focus on the methodology’s transferability to real 

world cadastral mapping scenarios. 
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