
URBANCO2FAB: COMPREHENSION OF CONCURRENT VIEWPOINTS OF URBAN
FABRIC BASED ON GIT

John Samuel1, Sylvie Servigne2, Gilles Gesquière3

1CPE Lyon, Université de Lyon, France - john.samuel@cpe.fr
2Université de Lyon, INSA-Lyon, LIRIS, UMR5205, F-69621, France - sylvie.servigne@liris.cnrs.fr

3Université de Lyon, LIRIS, UMR5205, F-69621, France - gilles.gesquiere@liris.cnrs.fr

KEY WORDS: Urban Fabric, Version Control Systems, City Information Model, Process Documentation

ABSTRACT:

The study of urban evolution requires representation and management of concurrent points of view using interoperable standards. An
extension to CityGML has been recently proposed (Chaturvedi et al., 2017) to represent urban evolution. In this article, we further
extend this work to represent different possible scenarios . The key characteristic of our approach is that it makes the most of existing
technologies like version control system so that users can easily work with our proposed extension. Our approach also lets the users
add and even modify information to versions and version transitions of scenarios in a given workspace.

1. INTRODUCTION

Cities undergo rapid changes. Some of them develop at a very
past pace whereas some others face gradual deterioration. To-
wards understanding and developing sustainable and durable cities,
both the categories of cities are being studied by historians and ur-
ban planners. Lessons from the past successes and failures serve
as a guidance for the future planning of the cities. But what may
seem as a failure by one may be considered as a changing point
by another. Therefore understanding urban evolution requires the
ability to represent and manage such different points of view.

2D maps have been used in the past to represent the urban foot-
prints of the cities. Color, textures and even multiple maps have
been used to compare the changing urban footprints. Models and
simulations have also been created by archaeologists to under-
stand the historical evolution of cities. The 4D visualization of
Bastion fort (Rizvic et al., 2015), digital reconstruction of the
city of Pompeii (Dell’Unto et al., 2013) and even the relief maps
of the past augmented with various video displays (Priestnall et
al., 2012) are commonly cited examples demonstrating the his-
torical evolution. However their focus has been limited. Take for
example, relief map models once built, offer very little scope for
subsequent modifications. Similarly, focus on a particular zone is
helpful for understanding its evolution, but cannot be extended to
other zones.

With the growing usage of internet, desktop and handheld de-
vices, several technologies are now available to build virtual ur-
ban models (Pfeiffer et al., 2013). It has become much easier
to build large scale flexible city models in such a virtual envi-
ronment compared to their equivalents in the real world. Adding
to this, thanks to the growing availability of international stan-
dards for urban models like CityGML (Gröger et al., 2012), the
focus has now shifted to building and sharing city models in an
interoperable manner. Several libraries and applications are now
currently available that can render 3D city objects like buildings,
bridges, roads etc in an efficient manner. These developments
have brought great hope in building generalized solutions that can
be easily maintained and extended to very large scales.

However, rebuilding the past of a city is not an easy task. Histo-

rians and researchers all around the world have been working on
the study of evolution making use of historical artefacts. For e.g.,
the Venice time machine project (Kaplan, 2015) aims to study
1000 years of Venice by building a very large document corpus
by digitizing historical archives. Numerous documents are avail-
able today that enable them to virtually reconstruct one or more
city objects and even reconstruct an entire town or city. These
documents include administrative documents like project plans,
aerial views, municipal council meetings and multimedia docu-
ments like videos, photographs, old postal cards, paintings etc.
Some of these documents are evidences to the actual buildings
of the past whereas others may be artistic renderings. Histori-
ans have found that unsuccessful projects that never came to full
fruition have left lasting impacts on the cities. While studying
the urban evolution, these traces are used to comprehend var-
ious socio-economic and political aspects of the given period.
Urban planners and historians need simplified ways (Samuel et
al., 2016) to represent, manage and share information concerning
changes of city objects.

Much recently, CityGML has been extended in order to represent
changes (Chaturvedi et al., 2017) in features of city objects. In
this article, we present a proof-of-concept called UrbanCo2Fab
by taking into consideration the above extension and further pro-
pose a simplified way to represent multiple viewpoints of urban
evolution. In order to reduce the learning curve of the users of
UrbanCo2Fab, we focus on using version control systems and
their vocabulary to manage the relevant information. The goal is
that any first-time user of the application does not need to waste
a lot of time in getting acquainted to its different capabilities.
For example, by making use of terms like versions, scenarios
(branches), we ensure that the users are quickly able to under-
stand the objectives of the tool.

In this article, we will discuss in detail the problem of represent-
ing and storing the different scenarios of urban evolution. We will
also detail the implementation of our approach using existing ver-
sion control system. Section 2 will present the existing state of
the art and their limitations. Section 3 will present in detail Ur-
banCo2Fab, describing the various options to manage urban data
and its evolution. We will also show the limitations of the GIT,

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W6, 2018 
13th 3D GeoInfo Conference, 1–2 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-4-W6-65-2018 | © Authors 2018. CC BY 4.0 License.

 
65



a version control systems for studying the urban evolution. We
also explain how we mapped our requirements to GIT and its op-
tions. We will see the implementation of the proof of concept in
section 4. Section 5 presents the results using an example and
we conclude our article in section 6, briefly describing our future
course of actions.

2. STATE OF THE ART

Last several years have seen the growing focus on the use of
desktop as well as mobile platforms and internet technologies for
building virtual urban environment (Pfeiffer et al., 2013). A num-
ber of mapping services are now available with the capability to
visualize 2D, 2.5D and 3D urban data. Incorporation of time-
line (i.e., support of the fourth dimension, time) to these services
help users to navigate through the historical past of a given area
at any available period of time. Projects like Bastion 4D visual-
ization project (Rizvic et al., 2015), Virtual Kyoto project (Yano
et al., 2008), have demonstrated this capability to document and
even visually narrate the historical evolution of important places.
Nevertheless, all these works have focused on giving a ‘one-shot’
video, useful to get a single narration of urban evolution obtained
after the consensus of different researchers working on the par-
ticular topic.

The goal of geographical information is not to limit to just four di-
mensions (Kaplan, 2015), but to be available to add additional in-
formation from diverse sources. These diverse sources may lead
to alternate conflicting narratives. Many of these narratives are
lost to the future generation. Therefore, we must be able to build
a generic method that can be used to represent and organize urban
evolution data, that can be used by several projects (and not just
to create a one-time 3D video) and also give other viewpoints.

There is a growing demand by historians and even urban plan-
ners for easily manageable interoperable solutions for geograph-
ical information (De Roo et al., 2013). One possible way is to
use and promote international standards. CityGML1 is one such
standard proposed by Open Geospatial Consortium (OGC) that
can represent cities in 3D format. 3D urban data CityGML files
for several major cities like Lyon, Berlin, New York are currently
available.

CityGML is an evolving standard that has been extended2 in sev-
eral ways to incorporate several information like indoor facili-
ties (Kim et al., 2014), dynamic properties(Chaturvedi and Kolbe,
2015), cultural heritage (Finat et al., 2010) etc. One recent work
proposed an extension to represent urban evolution (Chaturvedi et
al., 2017) by focusing on changes in features of city objects. But
this work is limited in its capability to represent multiple points
of views of urban evolution. Study of urban evolution requires
representation and management of multiple points of view of his-
torians and urban planners. In this article, we inspire from the
work done by (Chaturvedi et al., 2017), particularly their propo-
sition to use transaction timestamps and object existence times-
tamps in the real world, which in turn are inspired from the IN-
SPIRE model (Craglia and Annoni, 2007) model. Our proposed
approach tries to stay CityGML 2.0-compliant. With very little
modification to CityGML 2.0, we demonstrate how urban evolu-
tion can be represented and even shared.

1https://www.citygml.org/
2https://www.citygml.org/ade/

Collaborative approaches in geographical information systems
are not new. OpenStreetMap (Haklay and Weber, 2008) is a com-
monly cited example, where users edit maps adding, discussing
and finally coming into a consensus on the final information to be
shown. It does keep track of the user edits. However, once again,
the users are not able to easily see other points of view, i.e., the
users are only exposed to view obtained by consensus.

The ability to see and work with multiple possible scenarios is
a common problem in software development. Version control
systems (Spinellis, 2005) are now commonly used to develop
softwares, which let users independently develop programs. De-
velopers can switch to alternate view of development of code,
for example, addition of new features. They review the code,
come to a consensus and merge the proposed changes on the of-
ficial branch, usually referred to as the master brunch or even
trunk. Distributed version control systems (Milewski, 1997) even
let users fork entire repositories, thereby letting multiple concur-
rent development by various business players. These solutions
on first look may seem to match the requirements for managing
information related to urban evolution. However, existing solu-
tions including the latest version control system (VCS) like GIT
(Loelinger and MacCullogh, 2012), Pijul3 (inspired from cate-
gorical theory of patches (Mimram and Giusto, 2013)) have fo-
cused on managing line based changes. This line-based track-
ing approach, now almost a standard way is helpful in software
development since VCS must cater to the needs of developers
in different programming languages with varying syntax. Line-
based differences between two codes targets human coders. This
is not very useful to understand differences between city objects
represented by CityGML (a structured data format using XML or
JSON) that have undergone changes.

Geogig4, an application for distributed versioning of geospatial
data, tackles this problem for structured geographic data. It
makes use of GIT vocabulary and shows the feature differences
between two versions in a very user-friendly manner. One par-
ticular advantage of Geogig is that anybody familiar with GIT
can use it. However, it does not currently support CityGML files
and also it focuses on tracking user-made changes to geographical
data files. It tracks only the transaction timestamps corresponding
to the time when the user changes are actually stored in the repos-
itory. But the study of historical evolution requires working with
historical dates. It also requires management of evidences and the
proposed labels to significant events to support historians’ claims
of their different hypotheses of evolution proposed. In short, any
proposed solution firstly must go beyond two timestamps, i.e., the
beginnig and end of commit transaction time and must also en-
sure existence time of objects in real world. Secondly, GIT point-
ers track the changes and it is not possible to insert new versions
between two already created versions, an important requirement
while implementing evolving study of scenarios. Thirdly, it must
be able to specify and even modify labels to events. Finally, it is
not possible to directly use GIT unidirectional pointers for navi-
gating the past and future of an urban area with respect to a given
observation time.

In this article, we present UrbanCo2Fab, an application for com-
prehension of urban fabric for management of different points of
view of city evolution. Its goal is to manage multiple concurrent
scenarios of urban evolution. Historians can use it to represent
different urban projects and study the impact on their proposition

3https://pijul.org/
4http://geogig.org/

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W6, 2018 
13th 3D GeoInfo Conference, 1–2 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-4-W6-65-2018 | © Authors 2018. CC BY 4.0 License.

 
66



in urban development. It is able to represent consensus scenario
and multiple proposed scenarios of urban evolution. All these
aspects have been detailed below.

3. URBANCO2FAB

A city object like a building undergoes several changes: from an
initial empty plot to its construction to any possible modification
and finally its possible destruction. These different states can be
captured by versions shown in Figure 1. Consider the Figure 1
as the evolution of an administrative building between 1950 and
1972. There are five versions: V1, V2, V3, V4 and V5. The du-
ration of each version, i.e., the existence period of each version
has been shown by the grey block. Every version has a starting
period and a final period. Associated to each version, there is a la-
bel proposed by the user. For example, V1 has an associate label
Building constructed. Users can also propose a different label.

Period between two versions is called a version transition. In the
Figure 1, there are four version transitions: VT1, VT2, VT3 and
VT4. These can also be referred by using version identifiers. I.e.,
VT1, VT2, VT3 and VT4 can also be referred to as V1-V2, V2-V3,
V3-V4 and V4-V5 respectively. Like versions, version transitions
can also be labeled. For example, the period between V1 and V2
is labeled as Construction phase, referring to the construction of
a new floor. Version transitions also have a validity period. VT1
is valid between 1957 and 1958.

A scenario is a linear narration of changes of one or more city
objects. Therefore Figure 1 shows one possible scenario of con-
struction, modification and ultimate destruction of a building.
This scenario consists of V1, V2, V3, V4, V5 with its associate
version transitions VT1, VT2, VT3, VT4 in the given order.

time

Building
constructed

New floor 
added

Change in
function

New roof
added

Building
destroyed

1950 1957 1958 1960 1961 1962 1965 1967 1970 1972

V1-V2 V2-V3 V3-V4 V4-V5

Construction
Phase

Building
abondoned

V5V1

VT1 VT2 VT3 VT4

V4V3V2

Figure 1. Versions and Version Transitions

There can be any number of versions depending on the evidences
available. Take for example photographs showing the number of
floors of a 10 storeyed building at different periods of time may
be used to represent 10 different versions of a building. Another
user, may not be interested in going in detail to such a granular
level, may refer to only 2 versions: 0-floor building and 10-floor
building. Thus, it is left to the user making use of the available
evidences and the problem at hand for deciding the number of
versions that need to be created. Nevertheless, a version, may be
considered as a snapshot of one or more city objects at a given
point of time or a state of one or more city objects during a given
period of time.

In order to understand the details of a version, we start by first
considering city objects. CityGML for example has different
types of city objects, like building, bridge, vegetation, transporta-
tion etc. Every city object has one or more features. For example,
a building or a bridge has a texture. As shown in Figure 2 con-
sider a building with four features: its function, the number of
floors, roof type and textures. We futher elaborate the example in
Figure 1 with additional details. Feature values may change from
time to time. Versionable features (Chaturvedi et al., 2017) cap-
ture these changes. In Figure 2, feature ‘Function’ has undergone
changes three times, in version V1, it acted as as a public build-
ing, it had undergone a change in version V3, where it was used
as a private appartment. Finally this building was abandoned af-
ter version V4. There are ten timestamps t1 to t10. Versions are
shown by grey vertical boxes and cover a given time period.

Feature values also have a time period, i.e., the period during
which the value of the given is valid. But there may be cases,
when we do not have any information about a feature value. Like
in version V1, we do not have the value for the feature ‘Roof
Type’. This is possible when we do not have any evidences con-
cerning this value. Similarly, it is also possible, that a feature
value is empty, even though we know its previous values. This
is the case for the feature ‘Texture’ whose value was known for
versions V1 and V2, but not thereafter.

Whenever any of the feature value changes, either a version tran-
sition starts or a new version is created. This can be clearly seen
in the given example. When the validity period of feature ‘Num-
ber of storeys’ is over, version V1 is terminated and the version
transition VT1 starts. A set of feature value changes in a given
version transition is called a transaction. Take for example, in
version transition VT3, there are two transcations: change in roof
type and change in the number of storeys.

Thus versions or version transitions are dependent on the feature
value changes. A versionable feature therefore has two associate
timestamps (existence in the real world): start date and end date
for a feature value. Figure 3 can be generalized to more city
objects, where features F1 to F4 may belong to one or more city
objects. Thus, we assume that the features are uniquely identified.

time
t1 t2 t4 t6t3 t5

Function

Texture

Number of storeys

Roof type

t8t7 t10t9

V1 V2 V3 V4 V5

VT1 VT2 VT3 VT4

Figure 2. Change in features of a building. Every version V1-V5
has an associate existence time shown on the timeline. Versions
are shown by grey vertical boxes. The validity of existence of a

feature value is shown by the light-orange boxes.

Consider the scenario consisting of versions V1, V2, V3, V4, V5.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W6, 2018 
13th 3D GeoInfo Conference, 1–2 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-4-W6-65-2018 | © Authors 2018. CC BY 4.0 License.

 
67



time

t1 t2 t4 t6t3 t5

F1

F2

F3

F4

t8t7 t10t9

V1 V2 V3 V4 V5

VF4,2

VF3,2

VF2,1

VF1,1

VF3,1 VF3,4

VF4,4

VF1,5VF1,3

Figure 3. Versionable features of city objects. F1, F2, F3 and F4
are unique identifiers of features of city objects.

Let us assume that there is a consensus among all the researchers
that these states of city objects existed, because of enough mate-
rial evidences. These versions and associate version transitions
are part of the space called consensus space. However, some
historians propose a scenario of transition from V1 to V5 through
versions V7 and V8. Another group of historians propose a sce-
nario of transition through version V6. There are not enough ev-
idence to justifify their physical existence, hence they cannot be
part of the consensus space. These two possible scenarios con-
sisting of versions V1, V7, V8, V5 and V1, V6, V5 become part of
the propositions space.

A workspace is a virtual space for the study of urban evolution
used by one or more users to propose and save different possible
scenarios. It consists of two spaces: consensus space and propo-
sitions space. A consensus space consists of only one scenario
of versions and a consensus has been made that such a scenario
existed. propositions space, on the other hand consists of one or
more scenarios proposed by different historians, but a consensus
has still not been made. It is possible that once a consensus has
been made, a scenario from the propositions space enters to the
consensus space. Furthermore, it is also possible to move one or
more versions from a scenario in propositions space to consensus
space.

time

V5V1 V4V3V2

V7 V8

V6

Consensus Scenario

Proposition Scenarios

Figure 4. Workspace with two spaces for scenarios: Consensus
space and propositions space

Looking at Figure 4, one may have an impression that it is sim-
ilar to a version control system. This is true to a certain extent.
A workspace is analogous to a repository in VCS, scenario is
analagous to a branch, a consensus scenario is analogous to a
main branch (or trunk) and proposition scenarios are analogous
to feature branches or developer branches. This is in fact one of
the reasons that we decided to make maximum use of VCS vocab-
ulary for the management of workspaces. However, as discussed
above, version control systems have several limitations. A com-
parison between our proposition, UrbanCo2Fab Workspaces
and distributed version control systems is given in Table 1. As
can be clearly seen, VCS does not capture the notion of trans-
actions. UrbanCo2Fab, however captures the changes between
two versions (or simply a version transition) through transactions,
where every transaction may refer to insertion, deletion or mod-
ification of a particular feature value. VCS only tracks the cre-
ation time of a commit, whereas, in UrbanCo2Fab, we track
the real-world existence of a city object as well as the transaction
timestamps (when the object was created and completely saved to
a database). Commit messages in VCS cannot be modified once
a version has been created5. In UrbanCo2Fab, labels can not
only be assigned to a version, a version transition and a scenario,
but they can also be changed.

4. DEVELOPMENT

Figure 5 shows the basic architecture of UrbanCo2Fab. It is
built over GIT as shown in Figure 5 and makes use of git-like
commands to reduce the learning curve of new users (with slight
changes in vocabularly described in Table 1). It is developed in
Python using the Pygit26 library and tracks changes in city ob-
jects described using CityGML files. Pygit2 is a python interface
over GIT letting developers easily access GIT related metadata.

urbanco2fab commands

Urbanco2Fab

CityGML git

metadata
urbanco2fab

metadata

Figure 5. UrbanCo2Fab: Using urbanco2fab commands for
managing CityGML files for the study of urban evolution

We use pygit2 to access GIT related metadata, especially the in-
formation concerning GIT commits. A commit in a GIT is used to
give a timestamped snapshot of one or more files and directories.
Every commit has an associate metadata: commit author, author
signature (email), commit identifier (SHA1), pointers to previous
version (or versions in case of a merge), timestamp (or creation
date of a commit) etc. Commit identifier is used as a version iden-
tifier in UrbanCo2Fab. Continuing with our example, version

5git commit -m in GIT lets a user modify a message, but it leads to
the creation of a new version and the old version becomes an unreachable
version.

6http://pygit2.org/

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W6, 2018 
13th 3D GeoInfo Conference, 1–2 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-4-W6-65-2018 | © Authors 2018. CC BY 4.0 License.

 
68



Characteristics UrbanCo2Fab Workspaces Distributed Version Control Sys-
tems

Basic Unit of Change Feature of city object Line or byte of a file
Change Tracking Transaction and Version Version
Transaction Types Insert, Replace and Delete N.A
Transaction Timestamps Existence time and operation trans-

action times
N.A

Version Timestamped collection of version-
able features and associate transac-
tions

Timestamped repository state (usu-
ally after a commit)

Version Timestamps Existence time and operation trans-
action times

Time of creation

Version Transition Traversal backward, forward backward
Tag User-defined name to version, sce-

nario and version transition
User-defined name to version

Concurrent and Independent
development

Space, scenarios and workspaces Branches and repositories

Table 1. Comparison between UrbanCo2Fab Workspaces and Distributed Version Control Systems. Key differences are highlighted

identifiers V1, V2, V3, V4, V5 correspond to the commit iden-
tifiers obtained after performing a ‘git commit’ operation. This
has been shown in Figure 6. Note that for the sake of simplic-
ity, we do not consider highly granular commit timestamps, but
rather at monthly level (November 2017, January 2018 etc.) An-
other point to note that GIT does not have two timestamps for
commit: start and end time, but rather one. Please note that the
versions of a scenario need not be in a chronological order when
considering the commit time. For example, version V4 was cre-
ated in November 2017 whereas the version V3 was created in
May 2018, however, while creating a scenario, V3 appears before
V4. This is quite normal because scenario versions are created
when new evidences are available.

real-world existence time

Change in
function

New roof
added

Building
destroyed

Building
constructed

New floor 
added

1950 1957 1958 1960 1961 1962 1965 1967 1970 1972

V1-V2 V2-V3 V3-V4 V4-V5

Construction
Phase

V5V1

VT1 VT2 VT3 VT4

V4V3V2

commit time
Jan '18 Jan'18 Fev '18 Fev '18 May '18 May '18 Nov '17 Nov '17 Dec '17 Dec '17

Figure 6. GIT commit time UrbanCo2Fab real-world existence
time for versions and version transitions

As shown in Figure 7, UrbanCo2Fab works with two metadata di-
rectories: .git directory managed by GIT and .urbanco2fab man-
aged by urbanco2fab. It reads and writes to the .git metadata
directory using pygit2 interface whereas it directly interacts with
the .urbanco2fab metadata directory, reading, writing and even
updating information.

In order to limit the changes to CityGML, we make use of
two additional attributes (timestamps): validFrom and validTo to
demonstrate our idea. Every city object has an identifier (or a gml

identifier). We call it the major identifier. This identifier along
with the feature name is used to identify any particular feature
of a city object and we call it the minor identifier. For exam-
ple, in cases of a city object like a building having an identifier
CO1, CO1 is its major identifier and CO1#function is the minor
identifier of feature ‘function’ of the building. Whenever there is
a change in attribute (or feature value) of a city object, the user
changes the feature value and specifies the validFrom and validTo
timestamps to specify the validity of a version in the real-world.
The user adds these changes and makes a commit. We make use
of GIT commit to execute this step.

A commit created by the user corresponds to a version. A commit
has several interesting features: commit identifier, commit author,
commit message etc. When a user creates a scenario (similar to
branch), We check for any new/updated/ versionable features in
every CityGML file, verify existence timestamps and save these
changes. The verification process ensures that the validity pe-
riod of all the versionable features in a given scenario is well
respected.

GIT-like urbanco2fab commands

GIT

pygit2

Urbanco2Fab

urbanco2fab 

metadata

git 

metadata

get/write/update

get/write

Figure 7. UrbanCo2Fab built over GIT using pygit2

In order to implement UrbanCo2Fab, we now make use of the
existing commands of VCS and propose extensions in order to
integrate workspaces. Reutilisation of the existing VCS com-
mands is also to reduce the learning curve of users who want
to use UrbanCo2Fab. A summary of proposed commands is
described in Table 2.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W6, 2018 
13th 3D GeoInfo Conference, 1–2 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-4-W6-65-2018 | © Authors 2018. CC BY 4.0 License.

 
69



These are the major subcommands version, transaction, transi-
tion, scenario and workspace. version, scenario and workspace
have options for their creation, i.e., the users can use add option
with appropriate parameter values to create a new version, sce-
nario or a workspace. Similarly, these three subcommands also
have the option tag to specify short phrases.

Note the use of [–time “...”] and [–document “...”] in commit
option of version to specify the existence time of a version and
the links to supporting evidences. We see the usage of time once
again in log option of transition to be able to get historical or
future list of transactions with respect to the user-specified date.

Following are the major commands of urbanco2fab.

urbanco2fab init initalize a workspace and creates all necessary
files and folders required to work with urbanco2fab. Internally
it makes use of GIT initialization with additional urbanco2fab
information.

$ urbanco2fab init .

urbanco2fab add adds changes for creating a version. This is
similar to git add, where the user changes are staged for commit.
urbanco2fab rm removes files and urbanco2fab mv renames
files.

$ urbanco2fab add file1 file2

$ urbanco2fab rm file1 file2

$ urbanco2fab mv oldname newname

urbanco2fab commit commits changes. This is a very important
command of urbanco2fab. On completing this command, a new
version is created, if the timestamps are correctly respected.

$ urbanco2fab commit -m "new version" --time ‘‘..."

creates a new version with the message.

$ urbanco2fab commit -m "new scenario" \

-s "scenario name" -v v1 v4 v3 -vt v1-v4 v4-v3

creates a new scenario with three versions v1, v4 and v3 and ver-
sion transitions v1-v4 and v4-v3.

urbanco2fab clone clones a remote workspace to the current
workspace. urbanco2fab pull fetches and update changes to the
current workspace of the user. urbanco2fab push pushes user
changes to the remote workspace.

$ urbanco2fab clone URL

$ urbanco2fab pull

$ urbanco2fab push

urbanco2fab log gives the log of various changes with respect to
a given timestamp.

$ urbanco2fab log -hs --time ‘‘..."

shows all the versions before the given timestamp.

$ urbanco2fab log -fu --time ‘‘..."

shows all the versions after the given timestamp.

urbanco2fab diff: shows the differences between two versions
(useful for creating scenarios)

$ urbanco2fab diff version1 version2

where version1 and version2 are the SHA1 (commit signatures)
of the versions and can be obtained from urbanco2fab log com-
mand discussed above.

urbanco2fab show shows the details of a scenario, version or a
version transition.

$ urbanco2fab show -s scenario

$ urbanco2fab show -v v1

$ urbanco2fab show -vt v1-v4

urbanco2fab tag tags a version, version transition or a scenario.

$ urbanco2fab tag -s s1 -m "my tag"

5. RESULTS

In this section, we show the contents of various key as-
pects of UrbanCo2Fab. Consider a user, working with a
CityGML file concerning a building with the identifier GM-
LID BUI357978 1938 268. The user specifies the function and
also the time period of its validity through the command on mak-
ing a commit. UrbanCo2Fab parses the CityGML files staged
for commit, parses the XML files to find the (GML) identifiers
of different city objects to find and save the changes in feature
values.

<bldg:Building gml:id="GMLID_BUI357978_1938_268">

<bldg:outerBuildingInstallation>

<bldg:BuildingInstallation>

<bldg:function>1075</bldg:function>

...

A particular commit (version) in VCS stores only the timestamp
at which a commit has been made along with the commit
message (title) and a hash signature (identifier). We also
make use of these attributes in UrbanCo2Fab along with
some new attributes. There are two time periods, the trans-
action time corresponding to when the version was created
(storetransactionstarttime, storetransactionendtime)
and also the existence time
(existencestarttime, existenceendtime) that stores the
existence time of the given version in real-world. description
stores any detailed user-generated message and document can
be used to store links to a number of documents/evidence that
describes the version (photographs, web URLs etc).

In code block 1, we see an example for version V 1. tag are
specified by the user and here the user has chosen Building con-
structed. Tags are useful to search certain specific themes. There
are two document identifiers pointed to by document.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W6, 2018 
13th 3D GeoInfo Conference, 1–2 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-4-W6-65-2018 | © Authors 2018. CC BY 4.0 License.

 
70



Subcommand Summary
version
add Staging the data for the commit
mv Moving or renaming city model (e.g., CityGML) file(s)
rm Removing city model (e.g., CityGML) file(s)
commit [–time “...”] [–
document “...”]

Commit the changes and create a new version of desired type along with its
existence time and the links to supporting evidences

show Show the details of a commit
tag Tagging a particular version by user-specified phrases
transaction
diff Show the features that have changed between two version (or one transition)
transition
log [–historical | –future] [–
time “...”]

Show the history of changes going back to a particular time or the set of
changes that have been made from a particular time (future)

scenario
commit –version [] –
versiontransition []

Create a new scenario with the given versions and version transitions

show Show the details of a scenario
tag Tagging a particular scenario by user-specified phrases
workspace
commit –type [consen-
sus,proposition] -s “...”

add a scenario to a space

tag Tagging a particular workspace by user-specified phrases
clone Clone a workspace
init Initialize a workspace
pull Fetch and integrate with another workspace
push Update the changes to another workspace

Table 2. UrbanCo2Fab: Summary of major subcommands

{

"identifier": "V0",

"title": "Version 0",

"description": "Building constructed",

"tag": ["Building constructed"],

"document": ["doc31", "doc42"],

"existencestarttime": "1950-01-01",

"existenceendtime": "1957-01-01",

"storetransactionstarttime":

"2018-01-01 12:45:46",

"storetransactionendtime":

"2018-01-01 12:45:47",

"useridentifier": "user1"

}

Code Block 1. Example Version in JSON

{

"identifier": "VT1",

"title": "Construction phase",

"description":

"Construction of a new storey",

"tag": ["Construction phase"],

"document": ["doc34"],

"from": ["V1"],

"to": ["V2"],

"existencestarttime": "1957-01-01",

"existenceendtime": "1958-02-01",

"storetransactionstarttime":

"2018-02-01 12:00:01",

"storetransactionendtime":

"2018-02-01 12:00:01",

"transaction" : [

{

"idenitifier":

"GMLID_BUI357978_1938_268#storeysAboveGround",

"type": "Replace",

"existencestarttime": "1957-01-01",

"existenceendtime": "1958-01-01",

"storetransactionstarttime":

"2018-02-01 12:00:01",

"storetransactionendtime":

"2018-02-01 12:00:01",

},

...

]

}

Code Block 2. Example Version Transactions in JSON format
In code block 2, we represent version transition VT1 (or V1-V2).
Version transition stores the complete details of changes between
two versions (in the form of transactions). Some features like
identifier, title, description, . . . like those seen in V ersion
above serve the same purpose and are not described again here.
from and to are added to support forward and backward naviga-
tion of versions in a scenario. A transaction transaction stores
the details of changes that occurred to different feature. Com-
pare the existence times of V 1 in example from code block 1 and
V T1 in code block 2 as well as the existence time of one of the
transactions in VT1 concerning storeysAboveGround of city
object. Note the value Replace in type of the transaction.
A scenario stores the sequence of versions (versionid) and ver-
sion transitions (versiontransitionid) defined by the user as
shown in code block 3.

{

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W6, 2018 
13th 3D GeoInfo Conference, 1–2 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-4-W6-65-2018 | © Authors 2018. CC BY 4.0 License.

 
71



"identifier": "Scenario23",

"type": "consensus",

"title":

"History of adminsitrative building",

"description": "Proposed hypothesis

of changes to Admin building",

"tag": ["Administration"],

"storetransactionstarttime":

"2018-05-10 12:55:46",

"storetransactionendtime":

"2018-05-10 12:55:50",

"versionid" : ["V1", "V2", "V3",

"V4", "V5"],

"versiontransitionid" : ["VT1", "VT2",

"VT3", "VT4"],

}

Code Block 3. Example Scenario in JSON format
CityGML 2.0 has two attributes of dateOfCreation and dateOfDe-
molition, however it is limited to buildings and cannot represent
the intermediate states like the example shown above. CityGML
3.0 (Kutzner and Kolbe, 2018) will be released by the end of
the year 2018 which will introduce the necessary timestamps for
representing the versionable features, versions and version tran-
sitions presented in (Chaturvedi et al., 2017). Two timestamps
validFrom and validTo will be able to represent the lifespan of
any city object and therefore make the model shareable and in-
teroperable. Our proposed approach can be used in both these
versions.

6. CONCLUSION
CityGML 3.0 will be released by the end of this year and the
use of timestamps proposed in our proof of concept will soon
become part of the versioning module. We demonstrated in our
work, how these changes can be further enhanced to represent
concurrent points of view of urban evolution. By developing our
proof-of-work on GIT, it is also easy to share the evolution related
changes. Our next course of actions is to understand and deal with
scalability and performance issues for very large scale CityGML
files.

ACKNOWLEDGEMENTS
This work was performed within the framework of the LABEX
IMU (ANR-10-LABX-0088) of Université de Lyon, within the
program Investissements d’Avenir (ANR-11-IDEX-0007) oper-
ated by the French National Research Agency (ANR).

REFERENCES
Chaturvedi, K. and Kolbe, T. H., 2015. Dynamizers - model-
ing and implementing dynamic properties for semantic 3d city
models. In: F. Biljecki and V. Tourre (eds), Eurographics Work-
shop on Urban Data Modelling and Visualisation, UDMV 2015,
Delft, The Netherlands, November 23, 2015., Eurographics As-
sociation, pp. 43–48.

Chaturvedi, K., Smyth, C. S., Gesquière, G., Kutzner, T. and
Kolbe, T. H., 2017. Managing versions and history within seman-
tically enriched 3d city models. Advances in 3D Geoinformation,
Lecture Notes in Cartography and Geoinformation, Springer.

Craglia, M. and Annoni, A., 2007. Inspire: An innovative ap-
proach to the development of spatial data infrastructures in eu-
rope. Research and theory in advancing spatial data infrastruc-
ture concepts pp. 93–105.

De Roo, B., Bourgeois, J. and Maeyer, P. D., 2013. On the way to
a 4d archaeological gis: state of the art, future directions and need

for standardization. Proceedings of the 2013 Digital Heritage
International Congress. Vol. 2.

Dell’Unto, N., Leander, A. M., Dellepiane, M., Callieri, M., Fer-
dani, D. and Lindgren, S., 2013. Digital reconstruction and vi-
sualization in archaeology: Case-study drawn from the work of
the swedish pompeii project. In: 2013 Digital Heritage Inter-
national Congress, Marseille, France, October 28 - November 1,
2013, Volume I, IEEE, pp. 621–628.

Finat, J., Delgado, F., Martnez, R. and Hurtado, A., 2010. Gi-
rapim: A 3d information system for surveying cultural heritage
environments. ISPRS-International Archives of the Photogram-
metry, Remote Sensing and Spatial Information Sciences 38(4),
pp. W15.

Gröger, G., Kolbe, T. H., C., N. and K. H., H., 2012. OGC city
geography markup language (CityGML) encoding standard v2.0.
OGC Doc.

Haklay, M. M. and Weber, P., 2008. Openstreetmap: User-
generated street maps. IEEE Pervasive Computing 7(4), pp. 12–
18.

Kaplan, F., 2015. The venice time machine. In: C. Vanoirbeek
and P. Genevès (eds), Proceedings of the 2015 ACM Symposium
on Document Engineering, DocEng 2015, Lausanne, Switzer-
land, September 8-11, 2015, ACM, p. 73.

Kim, Y., Kang, H. and Lee, J., 2014. Developing CityGML In-
door ADE to Manage Indoor Facilities. Springer International
Publishing, Cham, pp. 243–265.

Kutzner, T. and Kolbe, T., 2018. Citygml 3.0: Sneak preview. In:
PFGK18 - Photogrammetrie - Fernerkundung - Geoinformatik -
Kartographie.

Loelinger, J. and MacCullogh, M., 2012. Version Control with
Git - Powerful Tools and Techniques for Collaborative Software
Development: Covers GitHub, Second Edition. O’Reilly.

Milewski, B., 1997. Distributed source control system. In:
R. Conradi (ed.), Software Configuration Management, Springer
Berlin Heidelberg, Berlin, Heidelberg, pp. 98–107.

Mimram, S. and Giusto, C. D., 2013. A categorical theory of
patches. Electr. Notes Theor. Comput. Sci. 298, pp. 283–307.

Pfeiffer, M., Carré, C., Delfosse, V., Hallot, P. and Billen, R.,
2013. Virtual leodium: from an historical 3d city scale model to
an archeological information system. ISRP Annals of Photogram-
metry, 2-5/W1.

Priestnall, G., Gardiner, J., Durrant, J. and Goulding, J., 2012.
Projection augmented relief models (PARM): tangible displays
for geographic information. In: S. Dunn, J. P. Bowen and K. Ng
(eds), Electronic Visualisation and the Arts, EVA 2012, London,
UK, 10-12 July 2012, Workshops in Computing, BCS.

Rizvic, S., Okanovic, V. and Sadzak, A., 2015. Visualization
and multimedia presentation of cultural heritage. In: Information
and Communication Technology, Electronics and Microelectron-
ics (MIPRO), 2015 38th International Convention on, pp. 348–
351.

Samuel, J., Périnaud, C., Servigne, S., Gay, G. and Gesquière, G.,
2016. Representation and visualization of urban fabric through
historical documents. In: 14th EUROGRAPHICS Workshop on
Graphics and Cultural Heritage.

Spinellis, D., 2005. Version control systems. IEEE Software
22(5), pp. 108–109.

Yano, K., Nakaya, T., Isoda, Y., Takase, Y., Kawasumi, T., Mat-
suoka, K., Seto, T., Kawahara, D., Tsukamoto, A., Inoue, M. and
Kirimura, T., 2008. Virtual kyoto: 4d gis comprising spatial and
temporal dimensions. Journal of geography, 117 pp. 464–478.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4/W6, 2018 
13th 3D GeoInfo Conference, 1–2 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-IV-4-W6-65-2018 | © Authors 2018. CC BY 4.0 License.

 
72




