Volume IV-4 | Copyright
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., IV-4, 49-57, 2018
https://doi.org/10.5194/isprs-annals-IV-4-49-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

  19 Sep 2018

19 Sep 2018

3D GEOSPATIAL INDOOR NAVIGATION FOR DISASTER RISK REDUCTION AND RESPONSE IN URBAN ENVIRONMENT

T. Ghawana1, M. Aleksandrov2, and S. Zlatanova2 T. Ghawana et al.
  • 1Integrated Spatial Analytics Consultants, India
  • 2UNSW Built Environment, Red centre Building, West wing, NSW 2052, Sydney, Australia

Keywords: 3D, Disaster Management, Indoor, Models, Navigation, Evacuation

Abstract. Disaster management for urban environments with complex structures requires 3D extensions of indoor applications to support better risk reduction and response strategies. The paper highlights the need for assessment and explores the role of 3D geospatial information and modeling regarding the indoor structure and navigational routes which can be utilized as disaster risk reduction and response strategy. The reviewed models or methods are analysed testing parameters in the context of indoor risk and disaster management. These parameters are level of detail, connection to outdoor, spatial model and network, handling constraints. 3D reconstruction of indoors requires the structural data to be collected in a feasible manner with sufficient details. Defining the indoor space along with obstacles is important for navigation. Readily available technologies embedded in smartphones allow development of mobile applications for data collection, visualization and navigation enabling access by masses at low cost. The paper concludes with recommendations for 3D modeling, navigation and visualization of data using readily available smartphone technologies, drones as well as advanced robotics for Disaster Management.

Download & links