ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume V-2-2020
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2020, 151–159, 2020
https://doi.org/10.5194/isprs-annals-V-2-2020-151-2020
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2020, 151–159, 2020
https://doi.org/10.5194/isprs-annals-V-2-2020-151-2020

  03 Aug 2020

03 Aug 2020

GEOMETRY-BASED REGULARISATION FOR DENSE IMAGE MATCHING VIA UNCERTAINTY-DRIVEN DEPTH PROPAGATION

M. Höllmann1, M. Mehltretter2, and C. Heipke2 M. Höllmann et al.
  • 1Plan-Based Robot Control Group, German Research Center for Artificial Intelligence (DFKI), Osnabrück, Germany
  • 2Institute of Photogrammetry and GeoInformation, Leibniz University Hannover, Germany

Keywords: Dense Image Matching, Depth Reconstruction, Regularisation, Triangle Mesh, Confidence

Abstract. In the present work, an uncertainty-driven geometry-based regularisation for the task of dense stereo matching is presented. The objective of the regularisation is the reduction of ambiguities in the depth reconstruction process, which exist due to the ill-posed nature of this task. Based on cost and uncertainty information computed beforehand, pixels are selected, whose depth information can be determined correctly with a high probability. This depth information assumed to be of high confidence is initially used to construct a triangle mesh, which is interpreted as surface approximation of the imaged scene and allows to propagate the confident depth information of the triangle vertices within local neighbourhoods. The proposed method further computes confidence scores for propagated depth estimates, which are used to fuse this depth information with the previously computed cost information, introducing a regularisation into the data term of global optimisation methods. Furthermore, based on the propagated depth information the local smoothness assumption of global optimisation methods is adjusted. Instead of fronto-parallel planes, the method presumes planes, which are parallel to the propagated depth information. The performance of the proposed regularisation approach is evaluated in combination with a global optimisation method. For a quantitative and qualitative evaluation two commonly employed and well-established stereo datasets are used. The proposed method shows significant improvements in accuracy on both datasets and for two different cost computation methods. Especially in unstructured areas, artefacts in the disparity maps are reduced.