ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Download
Publications Copernicus
Download
Citation
Articles | Volume V-2-2020
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2020, 419–426, 2020
https://doi.org/10.5194/isprs-annals-V-2-2020-419-2020
ISPRS Ann. Photogramm. Remote Sens. Spatial Inf. Sci., V-2-2020, 419–426, 2020
https://doi.org/10.5194/isprs-annals-V-2-2020-419-2020

  03 Aug 2020

03 Aug 2020

ACCURATE VEHICLE SPEED ESTIMATION FROM MONOCULAR CAMERA FOOTAGE

D. Bell, W. Xiao, and P. James D. Bell et al.
  • School of Engineering, Newcastle University, Newcastle Upon Tyne, UK

Keywords: Computer Vision, Traffic Monitoring, Vehicle Speed Estimation, Urban Analytics, Machine Learning

Abstract. A workflow is devised in this paper by which vehicle speeds are estimated semi-automatically via fixed DSLR camera. Deep learning algorithm YOLOv2 was used for vehicle detection, while Simple Online Realtime Tracking (SORT) algorithm enabled for tracking of vehicles. Perspective projection and scale factor were dealt with by remotely mapping corresponding image and real-world coordinates through a homography. The ensuing transformation of camera footage to British National Grid Coordinate System, allowed for the derivation of real-world distances on the planar road surface, and subsequent simultaneous vehicle speed estimations. As monitoring took place in a heavily urbanised environment, where vehicles frequently change speed, estimations were determined consecutively between frames. Speed estimations were validated against a reference dataset containing precise trajectories from a GNSS and IMU equipped vehicle platform. Estimations achieved an average root mean square error and mean absolute percentage error of 0.625 m/s and 20.922 % respectively. The robustness of the method was tested in a real-world context and environmental conditions.