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ABSTRACT:

The semantic segmentation of the huge amount of acquired 3D data has become an important task in recent years. Meshes have

evolved into a standard representation next to Point Clouds (PCs) - not least because of their great visualization possibilities.

Compared to PCs, meshes have commonly smaller memory footprints while jointly providing geometrical and high-resolution

textural information. For this reason, we opt for semantic mesh segmentation, which is a widely overlooked topic in photogrammetry

and remote sensing yet. In this work, we perform an extensive ablation study on multi-modal handcrafted features adapting the

Point Cloud Mesh Association (PCMA) (Laupheimer et al., 2020) which establishes explicit connections between faces and points.

The multi-modal connections are used in a two-fold manner: (i) to extend per-face descriptors with features engineered on the

PC and (ii) to annotate meshes semi-automatically by propagating the manually assigned labels from the PCs. In this way, we

derive annotated meshes from the ISPRS benchmark data sets Vaihingen 3D (V3D) and Hessigheim 3D (H3D). To demonstrate the

effectiveness of the multi-modal approach, we use well-established and fast Random Forest (RF) models deploying various feature

vector compositions and analyze their performances for semantic mesh segmentation. The feature vector compositions consider

features derived from the mesh, the PC or both. The results indicate that the combination of radiometric and geometric features

outperforms feature sets of a single feature type only. Besides, we observe that relative height is the most crucial feature. The main

finding is that the multi-modal feature vector integrates the complementary strengths of the underlying modalities. Whereas the mesh

provides outstanding textural information, the dense PCs are superior in geometry. The multi-modal feature descriptor achieves the

best performance on both data sets. It significantly outperforms feature sets that incorporate only features derived from the mesh by

+7.37 pp and +2.38 pp for 𝑚𝐹1 and Overall Accuracy (OA) on V3D. The registered improvement is +9.23 pp and +4.33 pp for 𝑚𝐹1

and OA on H3D.

1. INTRODUCTION

3D data acquisition and processing have increasingly become

feasible and important in the domain of photogrammetry and

remote sensing in the past decade. Common representations are

the modalities Point Cloud (PC) and mesh.

PC processing and interpretation are currently one of the most

popular topics. PCs are unordered sets of points directly meas-

ured with Airborne Laser Scanning (ALS) or derived from im-

ages via Multi-View Stereo (MVS). In contrast, surface meshes

are graphs consisting of vertices, edges, and faces that provide

explicit adjacency information. The mesh is adaptive to the un-

derlying geometry due to the non-uniformity and non-regularity

of faces. This means planar surfaces are represented by a few

large faces, whereas vivid areas are reconstructed by many small

surface elements. Generally, the adaptiveness results in a less

memory-consuming 3D representation compared to a PC. An-

other strength of meshes is the high-resolution texturing gener-

ating a realistic-looking 3D representation of the real world. We

are aware that meshing of PCs is a non-trivial task. However, in

our opinion, the mesh may replace unstructured PCs as the final

user product for urban scenes in the future.

For these reasons, we strive for semantic segmentation of tex-

tured urban meshes. With this work, we want to account for the

current hybridization trend and aim at semantic segmentation in-

tegrating information from PCs and meshes (hybrid semantics).

Joint photogrammetric and LiDAR acquisition (hybrid acquisi-

tion) is state of the art for airborne systems and emerges for Un-
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Figure 1. The top shows prediction results achieved with feature

vector compositions FS𝑑 (left, mesh features only), and FS 𝑗

(right, multi-modal features) (cf. Table 1) on the mesh in the

lock area of Hessigheim 3D (H3D). The official class color code

of the benchmark has been used throughout the paper (Kölle et

al., 2021). The bottom shows the respective red-green plots

indicating correct (green) and false (red) predictions. Faces with

unknown ground truth are marked in yellow. The most obvious

differences between the predictions are circled in skyblue.
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manned Airborne Vehicle (UAV)-based systems (Mandlburger

et al., 2017; Cramer et al., 2018). Recently, Glira et al. (2019)

proposed the hybrid orientation of complementary ALS PCs

and aerial imagery. Haala et al. (2020) proved its potential for

UAV data. The integrative character of the mesh facilitates data

fusion “out-of-the-box” by utilizing LiDAR points and MVS

points for the geometric reconstruction while leveraging high-

resolution imagery for texturing (hybrid data storage). However,

the information regarding the source modality is not encoded in

the mesh vertices and hence, cannot be accessed in further pro-

cessing steps, e.g., semantic segmentation.

Therefore, we make use of the Point Cloud Mesh Association

(PCMA) presented in (Laupheimer et al., 2020) to recover the

explicit one-to-many relationship between a face and points. The

association mechanism allows propagating information between

PCs and meshes in a subsequent information transfer. The scope

of this work is not to design new distinguishing features. In-

stead, we utilize standard features that are commonly used for

(semantic) segmentation tasks (cf. Section 2). Section 4.3 lists

the features derived from the mesh or the PC. We briefly review

the method and its improved implementation in Section 4.1.

We transfer information encoded in ALS PCs to meshes and en-

hance per-face descriptors to multi-modal feature vectors. We

construct various descriptors considering features of different

modalities, scales, and types (radiometry and geometry). The

main contribution of this work is an extensive ablation study

on the ISPRS benchmark data sets Vaihingen 3D (V3D) and

Hessigheim 3D (H3D) (Niemeyer et al., 2014; Kölle et al.,

2021) to investigate the impact of the deployed features. In

particular, we analyze the benefit of the additional PC features

by comparing the classifier performance with/without LiDAR

support on the face level. We establish a feature-based pipeline

for semantic mesh segmentation with well-established and fast

RF models (Breiman, 2001). Figure 1 shows exemplary results

for two dedicated feature vector compositions. In Section 5,

we report the performance metrics for the RF models deploying

various feature sets. We briefly present the data preparation and

meshing in Section 3. The Ground Truth (GT) generation is

discussed in Section 4.2.

2. RELATED WORK

The geospatial community put a big effort into the semantic seg-

mentation of large-scale (LiDAR) PCs over the past few years.

The recent rise of annotated urban mesh data may unleash the

potential of mesh interpretation. Section 2.1 reviews important

works for automated 3D scene interpretation - both for PCs and

meshes. Machine Learning (ML) classifiers, particularly Deep

Learning (DL) methods, rely on a huge amount of annotated

data, wherefore GT generation has become a crucial task. We

briefly review available GT for PCs and meshes in Section 2.2.

2.1 Semantic Segmentation of 3D Data

The 3D modalities PC and mesh facilitate expressive feature en-

gineering as the underlying geometry can be accessed directly.

A wide variety of features proved to be well-performing for se-

mantic segmentation of ALS PCs employing RFs or support

vector machines (Weinmann et al., 2015; Mallet et al., 2011;

Chehata et al., 2009). The used features describe the local

geometry or refine measured sensor data. Several works have

revealed that the height above ground is the most expressive

feature (Chehata et al., 2009; Guo et al., 2011; Kölle et al.,

2019). Similarly, geometric contextual features can also be de-

rived on the mesh (Kalogerakis et al., 2010). Rouhani et al.

(2017) derive geometric and photometric features from a pho-

togrammetric mesh, gather faces into so-called superfacets, and

train a RF.

Although expressive feature calculation is feasible in 3D space,

the rise of DL impacts semantic segmentation of 3D data. Grif-

fiths and Boehm (2019) review the current state-of-the-art DL

architectures for processing unstructured PCs. PointNet and

its hierarchical, multi-scale successor PointNet++ (Qi et al.,

2017a,b) constitute a milestone in DL-driven semantic PC seg-

mentation operating directly on unstructured 3D PCs for the first

time. KPConv introduces a continuous convolution defined by

kernel points in the Euclidean space whose locations can be

learned by the network (Thomas et al., 2019).

The emerging field of geometric DL extends basic DL opera-

tions to non-Euclidean domains such as graphs and manifolds

(Bronstein et al., 2016). However, the encoded topological in-

formation complicates the application of DL and increases the

computational burden during the representation learning. The

majority of DL-based approaches proved their capacity on non-

geospatial data sets (Qiao et al., 2019; Chang et al., 2018; Hu

et al., 2021a). Knott and Groenendijk (2021) are the first who

successfully adopted a well-performing DL approach from the

computer vision community. They achieved to apply MeshCNN

(Hanocka et al., 2019) to a real-world mesh at the expense of a

reduced class catalog and restructuring the spatial mesh tiling

to make use of local vicinity information.

Tutzauer et al. (2019) represent the mesh by its Centers of Grav-

ity (COGs). The COG cloud reduces the complexity and sim-

plifies further processing. Furthermore, it is robust against non-

manifolds occurring in automatically generated meshes. The

COG cloud differs from a common PC as it benefits from in-

herent mesh properties like the availability of high-resolution

texture and adjacency knowledge. They adopted and enhanced

the multi-branch 1D Convolutional Neural Network (George et

al., 2017), which is a mixture of feature-engineering and feature-

learning, and applied it to a 2.5D mesh.

In the light of the recent hybridization, multi-modal processing

is expected to improve automated scene interpretation. Some

works achieve multi-modality by rendering 2D views of the 3D

scene, learning the semantic segmentation in image space, and

finally, back-projecting the segmented 2D images onto the 3D

modality. The detour via image space leverages well-performing

and effective semantic image segmentation methods but comes

along with information loss due to discretization, occlusions,

and projection (Boulch et al., 2017; Lawin et al., 2017; He and

Upcroft, 2013; Su et al., 2015; Kalogerakis et al., 2017). There-

fore, other approaches augment 3D entities with features derived

from high-resolution images instead of simply back-projecting

per-pixel predictions to 3D space. Features are learned from

images, projected to 3D, aggregated per 3D entity, and fed into

a 3D network along with 3D geometry (Dai and Nießner, 2018;

Jaritz et al., 2019). These approaches integrate 2D and 3D

features in 3D space in an end-to-end-learning manner. Hu et

al. (2021b) enhance the joint 2D-3D learning to joint 2D-3D

semantic segmentation proposing the bidirectional projection

network that simultaneously generates 2D and 3D predictions.

The core of their symmetric network are two dedicated encoder-

decoder networks for 2D and 3D coupled by the intermediate

levels of the respective decoders.

The 2D-3D methods are characterized by integrating 3D data

and imagery. In contrast, our approach explicitly links the en-

tities of mesh and PC enabling flexible information sharing

between the 3D modalities while incorporating image data im-

plicitly via the mesh texture. To this end, we achieve multi-

modal semantic segmentation of PCs and meshes with arbitrary
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ML classifiers considering features from both representations.

In (Laupheimer and Haala, 2021), we extended the inter-modal

linking by explicitly associating the 3D modalities with imagery.

2.2 Ground Truth Availability

The vast majority of annotated geospatial data are LiDAR PCs

captured with ALS or terrestrial laser scanning (Niemeyer et al.,

2014; Hackel et al., 2017; Wichmann et al., 2018; Zolanvari et

al., 2019). Recently, two annotated meshes have been provided

to the community to foster semantic mesh segmentation. SUM

provides a large-scale photogrammetric mesh covering the city

of Helsinki (Gao et al., 2021). The mesh has been labeled semi-

automatically by human-verified predictions achieved with an

iteratively trained classifier. Likewise, H3D meshes have been

annotated semi-automatically by propagating manual annota-

tions from the PC to the respective mesh deploying PCMA

(Kölle et al., 2021). In comparison to the pure photogrammet-

ric mesh of Helsinki, H3D provides several epochs consisting

of multi-modal meshes constructed from imagery and LiDAR

data. To the best of our knowledge, H3D is the only data set that

provides annotated multi-temporal PCs and meshes.

The PCMA-guided semi-automatic annotation reduces the tedi-

ous and time-consuming label work, specifically for large-scale

data. PCMA can derive labeled meshes from any publicly avail-

able annotated PCs and vice versa, boosting the annotation of

various representations. Ramirez et al. (2019) present a virtual

reality tool that gamifies the manual labeling of meshes and PCs.

Meshes have been a default data representation in the domain of

computer vision for decades. Therefore, the development of se-

mantic mesh segmentation is mainly driven by that community

(cf. Section 2.1). However, they typically deal with meshes

covering indoor scenes and single objects (Armeni et al., 2017;

Shilane et al., 2004).

3. DATA PREPARATION

We utilize the manually annotated PCs of the ISPRS benchmark

data sets V3D and H3D (Niemeyer et al., 2014; Kölle et al., 2021)

to generate annotated meshes in a semi-automatically manner

(cf. Section 4.2). V3D is typical for airborne large-scale country-

wide mapping with moderate Ground Sampling Distance (GSD)

of some centimeters (GSD = 8 cm) and a considerable time shift

between ALS and nadir image data collection. As being cap-

tured in 2008, the ALS data features a point density of 4-8
points

m2 .

In contrast, H3D provides high-resolution data with mainly syn-

chronous data capture from a hybrid UAV sensor system and is

representative of data collection at small-scale complex built-up

areas (GSD = 2.5 cm and ALS PC density = 400-800
points

m2 ).

For both data sets, we generate textured and tiled meshes with

SURE 4.0.2 from nFrames (Rothermel et al., 2012). For H3D,

we derive a hybrid mesh by fusing the simultaneously acquired

oblique imagery and ALS data. Oblique images ensure proper

texturing of vertical faces such as facades. We generate a purely

photogrammetric mesh for V3D since the time-shift of imagery

and ALS data is roughly one month.

4. METHODOLOGY

We transform the mesh into the COG cloud and attach a 1D

feature vector to each COG. The linking of PCs and meshes as

described in Section 4.1 enables the multi-modal enhancement

of per-face feature vectors with features derived from the PC.

The used features are described in Section 4.3. We annotate

the generated meshes by propagating labels from the manually

annotated PCs (cf. Section 4.2). Hence, ML classifiers can

be trained to perform semantic mesh segmentation deploying

arbitrary feature vector compositions (cf. Section 4.4).

4.1 Point Cloud Mesh Association (PCMA)

The PCMA explicitly links faces and points in a face-centered

geometry-driven approach by establishing the one-to-many re-

lationships between faces of the mesh and points of the PC

(cf. Figure 2). We briefly describe the key steps of the asso-

ciation method for the understanding and refer the interested

reader to (Laupheimer and Haala, 2021) for more details.

Each face 𝑓 (represented by its COG) is assigned with 𝑛pts points

that represent the same surface by executing the following

three steps for each 𝑓 : (i) clipping of the point cloud P to

a spherical vicinity of 𝑓 (P → P′
𝑓
), (ii) filtering of out-of-

face points (P′
𝑓
→ P′′

𝑓
), and (iii) filtering of off-the-face points

(P′′
𝑓
→ P′′′

𝑓
). The remaining subset P′′′

𝑓
is the set of 𝑛pts points

linked to 𝑓 . Out-of-face points are points that are not enclosed

by the face borders when projected orthogonally onto the face

plane. Off-the-face points do not coincide with the face plane,

i.e., they are below or above the face surface. A manually set

threshold 𝜃 determines whether a point coincides with a face

or not. Both point types are not mutually exclusive and exist

due to discrepancies between the surface mesh and the ALS PC

featuring multi-target capability. Geometric simplifications and

geometry differences (e.g., due to 2.5D mesh geometry or asyn-

chronous data acquisition) increase the structural differences.

xx

(i)

(ii) (iii)

Figure 2. Sequential association steps (i) - (iii) of the PCMA to

filter point cloud P for each face 𝑓 : P → P′
𝑓
→ P′′

𝑓
→ P′′′

𝑓
.

(i): Clipping of the PC (black dots) to the spherical vicinity

(blue) of the considered face. Its COG is marked with a black

cross. The mesh surface and its vertices are depicted in green.

(ii): Filtering of out-of-face points based on the clipping result

(orthogonal view concerning the triangular face surface depicted

by its edges marked in black). (iii): Filtering of off-the-face

points (side view with respect to the triangular face). The face is

depicted as black line. The threshold band is marked in gray.

Concerning the scalability of the multi-modal association to the

huge amount of acquired real-world data, we process data in a

tile-wise fashion reducing the hardware requirements. There-

fore, we impose the given mesh tiling on the PC and execute the

previously described association steps for each tile. The parallel

processing of tiles speeds up the association.

Since we have to compensate several structural discrepancies

between PCs and 2.5D/3D meshes when processing real-world

data, we use a more sophisticated adaptive thresholding with an

arbitrary user-defined number of filter levels (Laupheimer and
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Haala, 2021). Laupheimer et al. (2020) discuss in detail the

particular challenges for the PCMA owing to 2.5D meshes and

jointly annotate the respective 3D PC. The challenges and limit-

ations of the association mechanism along with storage handling

are discussed by Laupheimer and Haala (2021).

The established links between the entities of the two modalities

enable the information transfer between mesh and PC. As we

strive for semantic mesh segmentation, we transfer information

from the PC to the mesh. The many-to-one relationship calls

for information aggregation on the face level. For each face,

we derive robust median features from the linked subset P′′′
𝑓

(cf. Section 4.3). The propagated attributes may embrace sensor-

intrinsic and handcrafted features, such as pulse characteristics

and sophisticated engineered quantities. Analogously, majority

votes determine the per-face labels as transferred from the as-

sociated points (cf. Section 4.2). The aggregated features and

labels are attached to the COG cloud. Non-associated faces

are marked with −1 labels and receive zeroed median features

(Laupheimer et al., 2020).

Figure 3 shows the PC and the respective 3D mesh colored by the

labels, the number of returns, and the reflectance. The annota-

tions and visualized features have been automatically transferred

from the manually annotated PC deploying PCMA-steered in-

formation propagation. Obviously, there are almost no dif-

ferences notable between the modalities. This shows that the

information transfer works reasonably - both for discrete and

continuous quantities. Moreover, the filtering effect of the me-

dian aggregation becomes visible for the transferred features.

For instance, roofs appear to be more monotonous on the mesh

than on the PC - particularly for the colorized reflectance.

Figure 3. The top row shows the PC of H3D colored by

manually assigned labels (left), number of returns (center), and

reflectance values (right). The bottom row shows the

counterparts on the mesh where all quantities have been

automatically transferred from the PC deploying PCMA. Faces

that cannot be linked with points are depicted in black. Please

note the colorization on the two modalities does not match

perfectly due to normal-depending shading, which is necessary

to uncover structure, i.e., to generate an illusion of depth.

4.2 Ground Truth Generation

As discussed in Section 2.2, data annotation is a highly relev-

ant task. The multi-modal entity linking allows the sharing of

manually attached labels across modalities and boosts the an-

notation process by limiting the time-consuming and expensive

labeling effort to a single representation. To this end, we utilize

the manually annotated PC data of V3D and H3D to propagate

their labels to the respective meshes leveraging the established

entity connections. The per-face label is determined via major-

ity voting. Please note, the semi-automatically annotated H3D

mesh data is provided to the community as part of the H3D

benchmark data (Kölle et al., 2021).

Figure 3 (left) showcases the semi-automatically derived mesh

annotation by the example of H3D. The figure qualitatively veri-

fies the effectiveness of the explicit entity linking. Additionally,

we cross-checked the propagated labels by a small manually

labeled subset of the H3D mesh. 96.7 % of the transferred

labels match with the manually provided labels on the mesh.

For comparison, a simple Nearest Neighbor (NN) interpolation

between the modalities correctly annotates 86.8 % of the surface.

Figure 4 contrasts the PCMA-steered propagation to the NN in-

terpolation. Our propagation method transfers information only

where an explicit connection is given. The provided annotations

are consistent with the source modality as PCMA-steered trans-

fer does not introduce unreliable information in data gaps like

the interpolation, which increases label noise and feature noise.

The last column depicts that our approach manages to deal with

complex structures, e.g., fine structures in the lock area.

Figure 4. Effect of different propagation methods. The

annotations of the manually labeled H3D PC (top) are

propageted to the mesh by a) PCMA-steered transfer (center) or

b) nearest neighbor interpolation (bottom).

4.3 Multi-Modal Feature Engineering

Handcrafted features are categorized according to their a) type

(geometric and radiometric features), b) scale (per-entity and

contextual features), and c) modality (derived from PC and

mesh). Whereas per-entity features consider a single entity,

contextual features gather information from adjacent instances.

Thereby, contextual features implicitly act as spatial regulariza-

tion causing spatially smooth labeling (Schindler, 2012).

The COG cloud allows PC-like handling of the mesh while pre-

serving features that have been calculated on the mesh topology.

For this reason, local vicinities can be defined identically on both

modalities. We define multiple spherical neighborhoods NH 𝑟
𝑖

with radius/scale 𝑟 ∈ {1 m, 2 m, 3 m, 5 m} for each entity to es-

tablish multiple levels of abstraction. The set of radii is inspired

by several works (Niemeyer et al., 2014; Blomley and Wein-

mann, 2017; Kölle et al., 2019). As a consequence, the feature

regularization on the mesh neglects the mesh topology but effi-

ciently derives multi-scale PC and mesh features. For instance,

the computationally expensive texture patch extraction has to be

done only for a single scale, i.e., the face level. We calculate the

Gaussian weighted average within NH 𝑟
𝑖 to generate the contex-

tual versions of the per-entity features.

Apart from modality-related features, we robustly calculate the

relative height for each entity by subtracting the terrain height

from the entity height. The relative height of face describes the

height above ground of the respective COG. The required ter-
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rain height is interpolated bilinearly from the respective Digital

Terrain Model (DTM).

Point Cloud Features. In addition to features provided by the

LiDAR sensor itself such as reflectance and echo ratio, we cal-

culate multi-scale features that proved to be well-performing for

semantic segmentation of ALS PCs (cf. Section 2).

To describe the local point distribution, we estimate the covari-

ance matrix of coordinates (also known as structure tensor) for

the local neighborhood of each point. The principal component

analysis provides the eigenvalues and eigenvectors of the struc-

ture tensor. Eigenvalue-based features refine the eigenvalues

to more comprehensive features: linearity, planarity, aniso-

tropy, sphericity, change of curvature, omnivariance, eigenen-

tropy, and sum of eigenvalues (Mallet et al., 2011; Weinmann et

al., 2015). Computing eigenvalues and eigenvectors eventually

means fitting a local plane. The eigenvector corresponding to

the smallest eigenvalue represents the normal vector of that local

plane. We extend the feature set by plane-based features vertic-

ality, roughness, and inclination. Furthermore, we extend the

point descriptor with density characteristics of the local vicinity

by volume density and surface density (Weinmann et al., 2013).

The presented features are median-aggregated per associated

face and attached to the COG cloud.

Mesh Features. We parse the textured meshes to derive geo-

metric and radiometric features for each face and attach them to

the COG cloud. Geometric features are computed by employ-

ing PyMesh (Zhou, 2018). We briefly introduce the calculated

features in the following.

Features may be calculated per face or vertex. Per-face fea-

tures such as face normal, face area, relative height of face,

and radiometric features are straight-forward to calculate. The

geometric per-vertex features inherently consider contextual in-

formation by exploiting the 1-ring neighborhood NH 1

𝑖
of a ver-

tex 𝑣𝑖 . NH
1

𝑖
comprises all adjacent vertices, incident edges, and

incident faces of 𝑣𝑖 . Valence defines the number of edges incid-

ent to a vertex and hence describes its degree of connectivity.

The dihedral angle of a vertex represents the maximum dihedral

angle between its incident faces and is a measure for surface

flatness. A dihedral angle of a vertex is the angle between two

faces sharing a common edge that incidents at the considered

vertex. Similarly, the Gaussian curvature and mean curvature

describe the surface topography.

To obtain radiometric features, we extract the texture patch 𝑇 𝑓

for each face 𝑓 from the lightweight texture atlas. The predom-

inant face color is captured by the median RGB tuple values of

𝑇 𝑓 . We use RGB color information, as well as its transformed

pendant in HSV color space, to ensure lighting independent

features. To increase color expressivity, we calculate the face

color variance per face for both color spaces. Additionally, we

calculate 8-binned histograms for each color channel to derive

the face color signature. Binning of 8 was set heuristically to

balance the number of empty bins and the required memory.

4.4 Setup for Feature Vector Composition Ablation Study

Leveraging the flexible feature-based COG representation in

combination with PCMA-steered information propagation al-

lows for an extensive ablation study with various feature vector

compositions considering multi-scale, multi-modal, multi-type

features. We perform the feature-driven ablation study on the

two benchmark data sets V3D and H3D with significantly dif-

ferent properties. For each face, we generate various feature

sets FS consisting of measured and engineered features derived

from the mesh and the PC (cf. Section 4.3). Table 1 gives

an overview of the studied FS. Feature vector compositions

FS𝑎 −FS𝑑 use features that have been derived on the mesh

(“mesh-only”). FS𝑒 −FS𝑖 deploy features for each face that

have been derived on the PC and propagated to the mesh (“PC-

only”). Feature vector FS 𝑗 combines the entire set of “mesh-

only” and “PC-only” features in a multi-modal descriptor for

each face on the mesh.

We opt for well-established and fast RF models to investig-

ate the impact of deployed features. The features are robustly

standardized according to the central moments of the dedicated

train sets. For comparability, the trained RF variants consist-

ently utilize 100 trees with a depth of 18 nodes (empirically

determined by grid search). All trained models deploy the

same weighting strategy, which considers class-dependent and

sample-dependent surface-aware weights. In particular, we set

face areas as sample weights to account for the non-uniformity.

To tackle the class imbalance, we weight classes inversely pro-

portional to the class-specific covered area.

FS Description

“m
es

h
-o

n
ly

”
a

Mesh-intrinsic geometric mesh features
(i.e., without relative height)

b
Geometric mesh features
(i.e., mesh-intrinsic + relative height)

c Radiometric mesh features (i.e., texture)

d
Geometric & radiometric mesh features
(i.e., all mesh features)

“P
C

-o
n
ly

”

e
PC-intrinsic geometric PC features
(i.e., without relative height)

f
Geometric PC features
(i.e., PC-intrinsic + relative height)

g Radiometric PC features (i.e., reflectance)

h Geometric & radiometric PC features

i
Geometric & radiometric PC features and echo
characteristics (i.e., all PC features)

m
u
lt
i-

m
o
d
al

j
Geometric & radiometric features from both mod-
alities and echo characteristics
(i.e., fusion of FS𝑑 and FS𝑖)

Table 1. Overview of the feature vector compositions FS sorted

into groups “mesh-only”, “PC-only” and “multi-modal”. The

computed features are described in Section 4.3.

5. ABLATION STUDY: ANALYSIS OF DIFFERENT

FEATURE VECTOR COMPOSITIONS

The trained RF models are evaluated on the dedicated test sets

of V3D and H3D with semi-automatically generated labels as

described in Section 4.2. We discuss the versatile feature vector

compositions FS listed in Table 1 by the achieved performance

metrics of the respective RF models and summarize the main

findings. Table 2 lists surface-weighted per-class 𝐹1-scores,

𝑚𝐹1-scores and OAs for the deployed FS on both data sets.

The COG predictions are weighted by the area of the respect-

ive face. 𝑚𝐹1-score is the mean across per-class 𝐹1-scores.

Figure 1 shows the prediction results for the semantic mesh seg-

mentation deploying FS𝑑 and FS 𝑗 .

We use the python package scikit-learn to inspect the rel-

evance of the deployed features. The relevance analysis reveals

that multi-scale contextual features are more important than per-

instance features for both radiometric and geometric features.

The most relevant mesh-intrinsic features are face normal (more
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F1-score [%]

Data FS
Low
Veg.

I. Surf. Car
Fence/
Hedge

Roof Facade Shrub Tree
𝑚𝐹1
[%]

OA
[%]

V3D

𝑎 29.53 61.73 6.94 1.33 66.26 38.87 5.92 53.30 32.98 51.49
𝑏 53.09 70.17 14.34 3.96 85.23 38.48 33.62 62.52 45.18 65.97
𝑐 52.89 78.70 16.92 6.62 81.51 28.77 25.68 58.11 43.65 66.34
𝑑 75.90 91.19 28.87 10.07 93.16 53.18 37.86 77.89 58.51 82.17
𝑒 50.47 75.46 32.27 16.03 78.83 61.39 28.14 66.15 51.09 65.99
𝑓 60.31 77.42 33.94 17.58 88.20 61.93 40.02 67.96 55.92 72.25
𝑔 39.10 74.23 15.56 16.29 40.03 13.11 15.38 31.82 30.69 44.45
ℎ 77.34 93.17 63.85 16.78 87.93 61.55 41.03 67.88 63.69 79.65
𝑖 77.51 93.09 63.95 18.37 88.22 61.98 41.19 68.00 64.04 79.84
𝑗 77.39 93.42 55.38 13.57 94.73 71.70 39.88 80.98 65.88 84.55

F1-score [%]

Data FS
Low
Veg.

I. Surf. Vehicle U. Furn. Roof Facade Shrub Tree
Gravel/

Soil
V. Surf. Chimney

𝑚𝐹1
[%]

OA
[%]

H3D

𝑎 58.59 54.86 5.08 25.87 61.27 63.54 19.62 85.05 11.97 56.95 43.52 44.21 59.90
𝑏 69.99 59.67 11.27 29.50 85.60 67.78 25.75 88.26 11.44 65.85 56.79 51.99 68.67
𝑐 70.97 71.15 12.25 29.32 73.39 52.86 23.66 69.23 26.12 48.70 7.21 44.08 63.78
𝑑 86.32 85.98 15.51 46.32 86.54 68.78 45.26 90.84 27.06 67.04 49.81 60.86 80.51

𝑒 73.52 69.21 34.58 37.53 83.21 76.09 57.86 92.94 14.70 43.43 56.03 58.10 72.70
𝑓 76.40 71.47 38.89 41.21 90.70 78.84 59.06 93.35 19.93 54.08 69.72 63.06 76.35
𝑔 46.62 25.70 12.35 19.13 47.39 29.91 10.99 76.91 17.23 5.50 17.36 28.10 40.87
ℎ 76.96 71.94 51.45 42.64 90.13 78.47 60.54 93.53 29.42 48.59 71.97 65.06 77.03
𝑖 76.78 72.24 52.26 43.61 90.32 78.75 60.73 93.95 29.12 49.17 71.62 65.32 77.16

𝑗 88.52 88.25 45.94 51.89 90.91 82.84 61.04 94.85 31.52 67.38 67.81 70.09 84.84

Table 2. Semantic segmentation results on the test site of V3D (top) and H3D (bottom) achieved with RF models deploying various

feature vector compositions FS (cf. Table 1). The performance metrics are weighted by the covered class area. Best performing

metrics are marked in bold; worst are underlined.

precisely its third component) and the face color, underlining

the strengths and key properties of the meshed representation.

Verticality and inclination are important features derived from

the PC. These features can be seen as the PC-pendants of the

face normal. The most crucial feature is relative height 𝛿ℎ. Cat-

egorically, the incorporation of 𝛿ℎ improves the performance by

decreasing the confusion between the majority of class pairs,

e.g., Shrub vs. Tree. However, it increases the confusion for

a few class pairs where 𝛿ℎ is not a distinctive feature like for

separating Impervious Surface from Low Vegetation. Its im-

portance is reflected by the performance discrepancy between

“mesh-only” configurations FS𝑎 & FS𝑏 and the “PC-only”

compositions FS𝑒 & FS 𝑓 respectively which both differ by 𝛿ℎ
only. Adding 𝛿ℎ to modality-intrinsic geometric feature sets

FS𝑎 and FS𝑒 improves the performance significantly for both

FS groups. For instance, 𝛿ℎ improves 𝑚𝐹1-score and OA by

12.20 pp and 14.48 pp in “mesh-only” mode and by 4.83 pp and

6.26 pp in “PC-only” mode on V3D.

The 𝛿ℎ-induced performance gain is significantly larger in

“mesh-only” than in “PC-only” mode (factor 2.3–2.5 for V3D

and factor 1.6–2.4 for H3D) hinting at the superiority of geo-

metric features derived from the PC. Standard geometric PC-

intrinsic features seem to be more expressive than default geo-

metric mesh-intrinsic features regardless of the underlying data.

Considering “PC-only” configurations FS𝑒 −FS𝑔, we note that

geometric feature vectors perform better than radiometric fea-

ture vectors for both data sets. The superiority of FS𝑒 and FS 𝑓

over FS𝑔 indicates the strong geometric information encoded

in the PC features. For example, FS 𝑓 outperforms FS𝑔 by

25.23 pp and 27.80 pp for 𝑚𝐹1-score and OA respectively on

V3D. Table 2 reveals that FS𝑔 achieves worst or close-to-worst

𝐹1-scores for almost all classes for V3D and H3D. FS𝑔 is the

worst feature composition in total.

On the contrary, when considering the “mesh-only” configur-

ations FS𝑎 −FS𝑐 , we notice that the radiometric feature sets

perform better than mesh-intrinsic geometric feature sets for

both data sets and can roughly compete with FS𝑏. For V3D,

FS𝑐 significantly outperforms FS𝑎 by more than 10 pp for both

global performance metrics. The performance metrics of ra-

diometric feature sets FS𝑐 and FS𝑔 show that texture inform-

ation from the mesh is superior to the natively available ra-

diometric information on the PC (i.e., reflectance). In contrast,

the comparison of geometric “PC-only” configurations FS𝑒 and

FS 𝑓 with their “mesh-only” equivalents FS𝑎 and FS𝑏 show

that geometric information derived from the PC significantly

outperforms geometric information derived on the mesh. The

findings validate our initial assumption: PCs are characterized

by high-quality geometry, whereas meshes provide high-quality

textural information. We are aware of the fact that these inter-

modal comparisons are not entirely fair due to differing feature

counts. The plentitude of geometric PC features uses 68 more

features than the geometric FS of “mesh-only” compositions.

Likewise, FS𝑐 entails several textural features, whereas FS𝑔

encompasses merely a handful of reflectance features. However,

the features are derived straightforwardly on each modality and

hence, implicitly encode and accentuate the strengths of both

modalities. The feature design is steered inevitably by the mod-

alities’ properties and maps the balance of power between the

two modalities.

Feature vectors that combine both feature types perform better at

the global scale than configurations that incorporate only either

geometry or radiometry for “mesh-only” and “PC-only” mode.

Geometric features are util for the separation of radiometrically

similar classes. Radiometric features help to separate geomet-

rically similar classes. FS𝑑 achieves the best performance for

the “mesh-only” configurations on both data sets. Its “PC-only”

counterpart FSℎ achieves roughly on par performance like the

best performing FS𝑖 of “PC-only” configurations. FS𝑖 en-

hances FSℎ with echo characteristics and achieves marginally

better performance metrics (≤ +0.35 pp for both global metrics).

Comparing FSℎ with FS𝑑 , we see that FSℎ outperforms FS𝑑

in terms of 𝑚𝐹1-score for both data sets. Their comparison

already documents the utility of the proposed multi-modal en-

tity linking and the subsequent information transfer for semantic

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume V-2-2022 
XXIV ISPRS Congress (2022 edition), 6–11 June 2022, Nice, France

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper. 
https://doi.org/10.5194/isprs-annals-V-2-2022-267-2022 | © Author(s) 2022. CC BY 4.0 License.

 
272



mesh segmentation although the compared descripors do not ex-

ploit the entire multi-modal potential.

FS 𝑗 integrates multi-scale geometric and radiometric features

of both modalities outperforming other feature vector composi-

tions in terms of𝑚𝐹1-scores and OA values. Table 2 reveals that

FS 𝑗 achieves best 𝐹1-scores for almost all classes. Compared

to the best “mesh-only” configuration (i.e., FS𝑑), the multi-

modal semantic segmentation achieves +7.37 pp and +2.38 pp

for 𝑚𝐹1 and OA on V3D. Similarly, FS 𝑗 outperforms FS𝑑 by

9.23 pp and 4.33 pp for 𝑚𝐹1 and OA on H3D. The significantly

improved performance metrics demonstrate the superiority of

multi-modal semantic mesh segmentation.

6. CONCLUSIONS AND OUTLOOK

In this paper, we evaluated the impact of multi-scale, multi-

type, and multi-modal features on semantic mesh segmentation

deploying RF models with various feature vector compositions.

The integration of features derived from the PC was accom-

plished with PCMA, which explicitly links points and faces.

We embedded PCMA in our semantic segmentation pipeline in

two ways: (i) to enhance per-face feature descriptors with PC

features and (ii) to generate annotated meshes of publicly avail-

able manually labeled PC data.

We run the performance analyses on the generated and semi-

automatically annotated meshes of the ISPRS benchmark data

sets V3D and H3D featuring considerably different point densit-

ies, GSDs and time-shifts between image and ALS data capture.

The ablation study showed the efficacy and benefits of the PCMA

for semantic mesh segmentation. Feature vectors deploying

only features derived from the PC already outperform mesh-

related feature sets. In particular, the enhancement of the face

descriptors with features derived from the PC causes a signific-

ant performance boost. The multi-modal feature vector outper-

forms feature sets that incorporate only features derived from the

mesh by +7.37 pp and +2.38 pp for𝑚𝐹1 and OA on V3D. The re-

gistered improvement is +9.23 pp and +4.33 pp for 𝑚𝐹1 and OA

on H3D. The multi-modal feature sets correctly predict 84.55–

84.84 % of the surface area. The analysis revealed that the mesh

provides superior textural information, while the dense PCs are

superior in geometry. Hence, the multi-modal feature vector in-

tegrates the complementary strengths of underlying modalities.

By these means, the multi-modality outperforms feature sets

that combine radiometric and geometric features from a single

modality only.

Regardless of the feature vector composition, relative height

showed to be the most relevant feature.

PCMA facilitates the information transfer between PCs and

meshes in both directions. Therefore, we would like to lever-

age the established entity connections to consistently segment

the given LiDAR PCs with predictions from the 3D mesh in

the future. So far, we have tested airborne scenarios with ALS

PCs only. We plan to test the pipeline with terrestrial data or

PCs derived from persistent scatterer interferometry. Moreover,

we want to extend the information transfer to image space as

proposed in Laupheimer and Haala (2021).
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