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ABSTRACT:

For some time now, machine learning methods have been indispensable in many application areas. Especially with the recent
development of efficient neural networks, these methods are increasingly used in the sciences to obtain scientific outcomes from
observational or simulated data. Besides a high accuracy, a desired goal is to learn explainable models. In order to reach this goal
and obtain explanation, knowledge from the respective domain is necessary, which can be integrated into the model or applied post-
hoc. We discuss explainable machine learning approaches which are used to tackle common challenges in the bio- and geosciences,
such as limited amount of labeled data or the provision of reliable and scientific consistent results. We show that recent advances in
machine learning to enhance transparency, interpretability, and explainability are helpful in overcoming these challenges.

1. INTRODUCTION

The usage of machine learning (ML) methods, especially neural
networks (NN), for scientific applications has grown consider-
ably in the last years. A major difference between commer-
cial and scientific applications is that ML models are not only
trained with regard to high accuracy, but there is also a high de-
mand for understanding the way that a specific model operates
and the underlying reasons for the produced decisions. This
is contrary to the black box behaviour of ML methods, and im-
plies that explainable machine learning approaches are required
to solve application-specific tasks.

In the bio- and geosciences, where remote sensing in combin-
ation with ML has proven to be an indispensable means for an
efficient provision of scientific results, the general goals for util-
izing ML are scientific understanding, inferring causal relation-
ships from observational data, or even achieving new scientific
insights. The reasons for demanding a higher level of explana-
tion for machine learning models are diverse and vary depend-
ing on the application and the user’s intentions, purposes, goals
or contextual accuracy standards. In the broader context, prop-
erties that can be relevant when considering explainability of
ML algorithms are safety/trust, accountability, reproducibility,
transferability, robustness and multi-objective trade-off or mis-
matched objectives, see e.g. (Doshi-Velez, Kim, 2017, Lipton,
2018). In the specific context of remote sensing applications,
explainable machine learning can be used to tackle common
challenges. We identified four of them, as illustrated in Figure
1, starting from the specific characteristics of remote sensing
data and reaching to the cross-domain challenge of providing a
transparent, interpretable, and explainable model, but also the
challenge of deriving scientific outcomes from output results.
Although many classical ML approaches are already employing
basic interpretability and explanation concepts such as feature
detection mechanisms or output visualization tools, the success
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Figure 1. Basic machine learning chain to derive input-output
relations. Various challenges arise when a machine learning

method is applied in remote sensing.

of NN models leads to the necessity of adapting and extending
these concepts to novel approaches and of formulating more
sophisticated explanation schemes.

In this paper, we focus on remote sensing applications in the
area of the bio- and geosciences such as satellite-based analyses
of processes and phenomena related to the Earth, but also ana-
lysis of close-range sensor data in the context of plant sciences.
The main contribution of this paper is the discussion of explain-
able machine learning approaches which are used for these ap-
plications and especially those ones which showed to be be-
neficial to tackle common challenges from the remote sensing
area. We continue our discussions from (Roscher et al., 2020)
and consider the usefulness of explainable machine learning not
only for deriving scientific output but also for tackling known
remote sensing challenges.

2. FROM BLACK BOXES TO EXPLAINABLE
MACHINE LEARNING MODELS

In the bio- and geosciences it is usually not enough to develop
models that are optimized for accuracy. Other properties such
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as transparency, interpretability and the possibility of integ-
rating domain knowledge are also desirable. Especially deep
neural networks, which provide high accuracy in many applic-
ation areas, are said to lack these properties.

The literature provides several terms which are related to ex-
plainable machine learning with only partially consistent mean-
ings, see e.g. (Doshi-Velez, Kim, 2017, Gilpin et al., 2018,
Guidotti et al., 2018, Lipton, 2018, Montavon et al., 2018, Mur-
doch et al., 2019). For this work, we rely on the definitions
given in (Roscher et al., 2020) and discuss them with regard to
applications in the bio- and geosciences. In contrast to recent
works which focus on the integration of domain knowledge to
enhance the scientific consistency and plausibility (von Rueden
et al., 2020, Karpatne et al., 2017), we focus on domain know-
ledge that is used for explainable machine learning.

2.1 Transparency

Transparency can be considered as the first step to open black
box models. Generally, an ML approach is transparent if the
training and testing process can be described and motivated by
the approach designer. Here, transparency is connected to vari-
ous aspects such as the overall model structure, model compon-
ents or the learning algorithm. One can differentiate even more
precisely between three kinds of transparency that involve dif-
ferent components: model transparency, design transparency,
and algorithmic transparency. An often mentioned example of
a non-transparent model, i.e. a black box model, is a neural
network. However, the model can be considered transparent as
soon as its input-output relation and structure can be written
down in mathematical terms, which is generally the case if the
model architecture and hyperparameters are given. Note that
three outlined transparency aspects of the model also relate to
the topic of reproducibility. Without a reproducible prediction
modelling pipeline and a reproducible outcome from a machine
learning approach, it is unlikely that we can obtain a useful ex-
planation of the results.

Domain knowledge can often boost design transparency. For
example, individual model components such as single modules
can be chosen based on knowledge from the specific applica-
tion domain. Hyperparameters, on the other side, are not linked
to domain knowledge but rather chosen heuristically and non-
transparent from an algorithmic viewpoint.

2.2 Interpretability

As stated by (Montavon et al., 2018), an interpretation can be
seen as a mapping of an abstract concept, such as ML learn-
ing behavior, into a domain that the human can make sense of.
Several interpretation tools that help to understand ML models
and their decisions better have been proposed recently. Further
details, types of interpretation, and specific realization can be
found in recent surveys (Adadi, Berrada, 2018, Gilpin et al.,
2018, Guidotti et al., 2018). Visualization techniques that pro-
duce heatmaps showing relevant patterns in the input given the
learned model are commonly used. Among these approaches
are saliency/sensitivity maps, attention maps, relevance maps,
or feature importance maps (Hohman et al., 2018, Montavon et
al., 2018, Olah et al., 2018, Fukui et al., 2019). Note that these
approaches reveal different properties on how the inputs affect
the ML model, e.g., how much does an attribute contribute to a
prediction versus how strongly does the prediction change when
an attribute is changed. Therefore, these maps lead to different
interpretations and explanations.

Other approaches use proxies that approximate complex mod-
els, such as neural networks, with simpler and more inter-
pretable designs such as decision trees or linear models (Gilpin
et al., 2018, Guidotti et al., 2018). Prototype selection produces
archetypal or representative samples that summarize the input
data given the ML model and its decisions, usually based on
similarity of the input for the same prediction. In the case of un-
labelled data, linear or nonlinear dimensionality reduction can
be used to analyze or visualize the data, and the obtained low-
dimensional embedding or latent variable model can be inter-
preted (Lee, Verleysen, 2007, Cichocki et al., 2009), e.g., by
comparing to (known) physical quantities.

2.3 Explainability

(Guidotti et al., 2018) write that the definitions of explana-
tions in AI assume implicitly that the concepts expressed in
the understandable terms composing an explanation are self-
contained and do not need further explanations. Therefore, it
is usually proposed to achieve explainability purely algorith-
mically. On the other hand, we expect that domain knowledge
is needed to infer explanations suitable for the underlying sci-
entific investigation. Furthermore, the needed explanations will
depend on the type of scientific analysis. Getting a first insight
into which attributes influence an ML prediction at all is a dif-
ferent goal than investigating why example A shows a differ-
ent behavior than example B. Overall, the scientist is using the
data, interpretations, and domain knowledge to explain the out-
put results (or the data) in correspondence to the scientific goal.

Note that the interpretation of a model — in understandable
terms to a human — for an individual datum, on its own, might
not provide an explanation to understand the decision. For ex-
ample, the most relevant variables might be the same for several
data, but the important observation for an understanding of the
overall predictive behavior could be that in a ranking with re-
spect to the interpretation, different variable lists are determined
for each datum as being of relevance.

2.4 The role of domain knowledge

In traditional machine learning, domain knowledge is used for
feature engineering and data preprocessing. We consider two
additional major reasons why the integration of domain know-
ledge is an indispensable part of a successful machine learn-
ing model. First, domain knowledge is an essential part of ex-
plainability. As pointed out in the previous section, we state
that a machine learning model cannot be explained without do-
main knowledge. Domain knowledge can be integrated into the
model in different ways and help to achieve a higher level of ex-
plainability. It can also be applied post-hoc, e.g., to the model
components or the output in order to explain them.

As second reason, we consider domain knowledge to be bene-
ficial for restricting the solution space to scientifically consist-
ent and plausible solutions. Not only does this lead to more
scientifically valuable and more trustworthy results, but it can
also help with the treatment of small data scenarios, or be used
for performance reasons. (Reichstein et al., 2019) identify sci-
entific consistency besides interpretability as one of the five ma-
jor challenges that must be tackled in order to successfully ad-
opt deep learning approaches in the geosciences. Note however
that the explicit restriction of the solution space to scientific-
ally consistent and plausible solutions is not a requirement to
achieve explainable models and results and valuable scientific
outcomes. Nonetheless, neglecting this restriction means that a
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consistent and plausible solution cannot be guaranteed, even if
an optimal result has been achieved from a mathematical point
of view.

(Karpatne et al., 2017) term the integration of physical know-
ledge into machine learning methods theory-guided data sci-
ence and discuss several applications of it. Additionally, (Raissi
et al., 2017) consider this aspect with a special focus in their
work on physics-informed learning. A general taxonomy for
an explicit integration of scientific knowledge into the ML
pipeline, called informed ML, is proposed by (von Rueden et
al., 2020). Their work states that three aspects are involved
in an informed machine learning process: the type of integrated
knowledge, the representation and transformation of knowledge
to be integrable, and the location where the knowledge is in-
tegrated into the ML approach. Moreover, they point out that
knowledge can be integrated into the data, the model learning
process, or in the patterns. Generally, they point out that sci-
entific consistency at the design stage can be understood as the
result of a regularization effect, where various ways exist to re-
strict the solution space to scientifically consistent solutions.

Different types of domain knowledge from the bio- and
geosciences can be integrated, where scientific consistency can
be considered a priori at the model design stage or a posteri-
ori by analysing the output results. For example, in the envir-
onmental and Earth system sciences, knowledge is oftentimes
governed by scientific laws, analytic expressions, or differen-
tial equations (Reichstein et al., 2019). Knowledge can also be
exploited by numerical simulations (Moseley et al., 2019), or
by considering invariance, e.g., to scale (Murray et al., 2019)
or to rotations (Cheng et al., 2016), or by encoding equivari-
ance within the structure of a model. A popular method, which
is mainly used for neural networks, is pre-training with sim-
ulation data and fine-tuning with actual labeled data from the
application, which is usually limited.

Remote sensing data in general is geolocated, meaning that geo-
spatial information such as coordinates are given along with ac-
tual sensor data. Due to the known position of the acquired
data and meta-information such as the characteristics of the
area (e.g., agricultural area, urban area, etc.) and the applic-
ation task (e.g., building detection, biomass estimation, etc.), a
variety of prior information can be integrated. For example,
tasks related to man-made objects can include many differ-
ent geometric properties, the assumption about uniform ob-
ject sizes in metric space, and relationships between instances
and/or classes. These can be represented in form of rules or
constraints, ontologies, symmetries, or similarity measures.

Another valuable source of information is world knowledge,
i.e., knowledge which is generally known to humans. For ex-
ample, knowledge about land use, land cover changes, and (es-
pecially) their transition probabilities can be utilized. Thus, a
transition from forest to burnt area might have higher likelihood
than in the opposite direction, and it is obvious that desert areas
tend not to turn into water areas. On the other hand, with know-
ledge of the phenological stages of plants and prior knowledge
of crop rotations, highly probable transitions can be defined in
advance. Another kind of knowledge that is much harder to
integrate because it is not formalized is experts’ intuition and
knowledge from experience, given that such knowledge is dif-
ficult to represent as something that the computer can interpret.
Here, human interaction is necessary to transform the given in-
formation, whereby the quality of the chosen representation is
difficult to evaluate.

3. EXPLAINABLE MACHINE LEARNING
FOR REMOTE SENSING

In recent years, the possibilities for increasing the explanat-
ory power of machine learning models have grown. Although
the motivations are similar in different communities, they dif-
fer based on the application and the user. This section reviews
several applications from the bio- and geosciences that are ad-
dressed by remote sensing techniques and explainable machine
learning approaches. Note that this collection of research works
is a non-exhaustive selection from the most recent years of the
literature. For each application, we start with a characteriza-
tion of the challenge in more detail, followed by relating this to
long-established approaches. We also look at novel approaches
that have emerged mainly due to the uptake of NNs in this area,
as they are the dominating ML approach used in the recent lit-
erature.

3.1 Challenge: Complex Data

Remote sensing data is oftentimes characterized by multi-
modality, high dimensions (e.g., when using hyperspectral
sensors), and various noise sources. As a result, patterns in the
data and relations are difficult to discover, and preprocessing is
necessary in the course of exploratory data analysis.

A long-standing and widely used method to transfer acquired
data into a more interpretable data representation is feature ex-
traction. For instance, (Laparra et al., 2015) use an iterative
dimensionality reduction approach based on principal compon-
ent analysis for hyperspectral image data in order to determ-
ine which components contribute the most to reconstructing the
original data and manage to accurately retrieve temperature and
water vapor parameters. Although approaches such as feature
selection, visualization techniques, or extraction of prototypical
examples are nothing new, they are still essential and valid re-
search tools to better understand the behaviour of models and
their decisions, and to explain them in the context of the specific
application domain. However, if recent approaches such as NNs
are used, classical interpretation tools may not be applicable or
do not lead to the desired success, and therefore new interpret-
ation tools need to be developed and existing ones need to be
improved and adapted. It should also be noted that although the
approaches mentioned above may provide better interpretabil-
ity, there is no guarantee of an explanation. For example, if the
underlying factors of variation are not captured, explanations
may not be possible or may even be misleading.

As a modern approach used in neural networks, (Lorenzo et al.,
2018) use attention modules in CNNs to select bands from hy-
perspectral images that contain the most important information
for a given task. The attention modules are inserted in vari-
ous depths in the network and output heatmaps, which identify
the most informative regions in different scales. Confidence
scores are computed from the heatmaps and the classifier’s out-
put. Combining these with an elliptic envelope algorithm, the
most meaningful bands are selected which are responsible for
distinguishing land cover classes. Moreover, they analyze the
impact of using attention modules and can underline that they
do not influence the classification accuracy. Therefore, atten-
tion modules can be used to enhance interpretability and ex-
plainability without decreasing the accuracy. With the same
goal, (Nagasubramanian et al., 2019) use saliency maps ob-
tained from 3D CNNs meant for hyperspectral plant disease
classification to provide physiological insights into the network
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predictions. In detail, they use the maps to identify the hyper-
spectral wavelengths and pixel locations that contribute most to
the classification result. Both saliency maps in the spatial and
spectral domain are visualizations understandable by a domain
expert and contribute significantly to the result’s confidence.

(McGovern et al., 2019) introduce composite saliency maps
for tornado prediction based on radar images. By generating
a human-understandable composite of saliency maps for all in-
put images, they are able to explain input-output relations such
as the probability of tornado events given a specific meteoro-
logical scenario. Their work shows that saliency maps reflect
meaningful relationships that are learned by the model and that
are in compliance with concepts familiar to meteorologists.

With the aim of obtaining a better understanding of complex
remote sensing observations, (Wolanin et al., 2020) perform
wheat yield estimation for the Indian Wheat Belt based on
MODIS products and meteorological data. They utilize regres-
sion activation mapping, which is especially suitable for inter-
preting time-series data, for deeper analyzing their CNN. These
activation mappings are meant to localize important patterns in
time-series inputs and support findings of the network predic-
tions. (Wolanin et al., 2020) show that the found patterns can be
explained with specific domain knowledge and that they can be
related to crop growth and meteorological conditions. This un-
derlines the assumption that such interpretation tools can lead
to novel insights about influencing features and events.

Another interpretation tool that provides relevant and human
understandable information about the input is the summariz-
ation of the input data to so-called prototypes, which repres-
ent the patterns the network considers as most associated with
the output. (Toms et al., 2019) apply this technique to an NN
model which was trained for the analysis of climate patterns,
where their prototypes are named optimal inputs. In their con-
sidered scenario they assign sea surface temperature anomaly
maps to El Niño and La Niña events, where protoypes for both
outputs were produced. Based on the prototypes, relevant spa-
tial structures that are typical for both effects can be observed.
Although this states a simple application scenario, it shows that
prototypes support the user to quantify patterns in the data that
maximize the envisioned outcome of the network.

3.2 Challenge: Limited Amount of Data Labels

A general challenge in remote sensing is that labeled samples
are scarce. The reason is that manually labeling data is expens-
ive and time-consuming, and even sometimes unbearable or im-
possible, e.g., if the study area is not accessible. Moreover,
the collection of labeled samples is subjective, which can res-
ult in a biased model. Explainable machine learning models,
once trained and in combination with interpretation tools, can
be used to identify new samples that are valuable to increase
stability, robustness, and the generalization ability of the cur-
rent model, or for model transfer to changing environments.

A long-standing approach to this challenge is self-training,
where the training data set is extended by samples that are
considered relevant after application of the current model, and
active learning, where additional training samples are acquired
through the guidance of a user (Tuia et al., 2009). Self-training
is used to avoid the creation or usage of large sample sets of
labeled data, i.e. to adaptively enhance the available data set
by samples which contribute most to the ML model’s error re-
duction for instance. For example, (Baetens et al., 2019) use

active learning and random forests for cloud detection and the
creation of visualization masks in multispectral observations.
Their approach consists of determining pixels or regions of low
classification confidence in each ML step and retraining only in
the respective areas. In this way, a large computational over-
head is avoided and the user has a means of directly forcing the
ML model to reiterate on obvious misclassifications. Consid-
ering scale invariance or equivariance within a model has been
shown to improve performance for tasks where training data
is limited and the number of model parameters must be kept
low (Murray et al., 2019). Such approaches have always been
very common and are also used for neural networks.

(Bi et al., 2019) employ both data augmentation methods and
active learning mechanisms to remedy the problem of scarce
amounts of labeled input data for polarimetric synthetic aper-
ture radar image classification. They train a multi-layer CNN
by using only a small amount of annotated input pixels. Then,
the active learning decision mechanism considers ambiguous
samples (i.e., samples for which their probabilities of belong-
ing to the two most probable classes are close to each other) as
inputs for the next ML iteration. Furthermore, invariance in-
spired data augmentation is performed via image patch rotation
and flipping. Afterwards, the model is retrained and the pro-
cess is repeated until the prediction error is sufficiently small.
Finally, energy minimization over a graph-based Markov ran-
dom field model is used to achieve noise reduction and spatial
consistency of the NN predictions.

With similar ideas, so-called adversarial examples are ex-
ploited. They are caused by artificial or unforeseen disturb-
ances and are oftentimes imperceptible by humans. They are
known to deteriorate the accuracy and stability of NNs (Chen et
al., 2019). Adversarial attacks can be seen as an interpretation
tool, given that they help to understand the weaknesses of the
trained NN model and the shortcomings of the given training
data set. As stated by (Goodfellow et al., 2014), training on
adversarial examples can regularize the model. Therefore, the
identification of such samples can be beneficial for model train-
ing. For example, (Yang et al., 2019) utilize CNNs and class ac-
tivation maps (Grad-CAM++ , (Chattopadhay et al., 2018)) for
land use classification and object detection to identify regions in
aerial images which contribute most to the networks’ decision.
By training the network with images in which the most con-
tributing regions are occluded on purpose (i.e., adversarial ex-
amples), the network additionally learns on samples which are
difficult to predict. Their motivation is to enhance robustness
and the generalization ability of the network by this manipulat-
ing technique, which is measured by the increase of the accur-
acy on the test set. Despite the success of active learning and
adversarial attacks, they differ from explainable machine learn-
ing approaches where domain knowledge is exhaustively ex-
ploited to guide the learning process rather than automatically
generated evaluation criteria such as classifier’s confidence.

(Janik et al., 2019) point out that explainable models help to
identify properties of the data which result in good model per-
formance. This information helps to improve the model itself
and guides a better selection of the input data. In many remote
sensing applications where in-situ data is needed as training
data, this time-consuming collection process can be optimized
with the knowledge about the value of specific data samples.
In their work, they introduce an interactive visualization tool
that uses learned latent representations and an intersection over
union values. The latent representation is not inherently under-
standable by a human, but can be visualized by PCA. Given the
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low-dimensional representation and the intersection over union
values, image patches with similar values can be grouped to-
gether regarding important features for the network. One mo-
tivation behind this tool is a pre-screening of potential image
patches that are valuable for labeling.

3.3 Challenge: Overcome Model’s Black-Box Behavior

Remote sensing applications usually involve very complex pro-
cesses and phenomena. Therefore, approaches such as neural
networks are promising because of their ability to character-
ize complex relationships. However, the supposed black-box
behavior of these methods leads various communities to resist
their use. One challenge is the model tuning, e.g., the choice
of hyperparameters or the adaptation of the design regarding a
specific application. Due to the complexity of the model and
a general lack of interpretability, the model’s improvement is
not trivial and involves time-consuming search processes. So
far this challenge has received little attention, as models have
been used that are easier to understand, such as decision trees.
However, with the use of complex neural networks this point
has become one of the main challenges in remote sensing.

Besides the visualization of single model components (e.g.,
single filters in neural networks to evaluate the learned struc-
tures (Marcos et al., 2018, Gagne II et al., 2019)), additional
interpretations tools are used to understand the model behavior.
Class activation maps (CAMs) are used by (Fu et al., 2019)
in their MultiCAM approach. An NN consisting of two sub-
networks is used for aircraft detection in aerial images. The first
sub-network extracts features from the whole image and deliv-
ers object saliency maps for each class, whereas the second sub-
network learns features from a focused region that is derived
from a combination of all class-wise saliency maps. Classifica-
tion is performed on fused features from both sub-networks. In
contrast to other works using CAM (e.g., (Vasu et al., 2018)),
this approach uses the saliency maps of all classes and com-
bines them into one. In this way, the object will be localized
even if classified incorrectly. Overall, their procedure can thus
not only help to identify the part of the image that is the focus
of the network, but also improves model performance due to a
more focused learning procedure.

The interpretable and explainable LSTM network presented by
(Hochreiter, Klambauer, 2019) for rainfall-runoff forecasting is
one of the first works in the geosciences where single model
components are interpreted and explained. The general idea
is to relate the model components to specific application scen-
arios, system parameters, or states. They succesfully analyze
whether single components of the trained model are in com-
pliance with hydrological processes. In this case, they focus
on memory cells, which are a crucial element of LSTMs, and
correlate the cell state with hydrological storage processes. In
this way, they relate single memory cells of the LSTM to hy-
drological system states such as snow. Moreover, interactions
between neurons turn out to be useful indicators for influences
from meteorological input variables such as temperature. Al-
though the results are preliminary, this can be seen as one of
the first promising attempts to inform domain experts, e.g., hy-
drologists, about patterns and relations the network found. In
this way, the network can be optimized in a significantly more
intuitive way than by using common hyperparameter and ar-
chitecture searches. With a similar idea, (Marcos et al., 2019)
use semantically interpretable activation maps, an interpretable
intermediate representation in a neural network to better under-
stand which features distinguish scenic and non-scenic images.

(Camps-Valls et al., 2018) use physics-aware Gaussian pro-
cesses with the goal of estimating bio-physical parameters, e.g.,
leaf area index from remote sensing data. For this, they learn a
latent force model with incorporated ordinary differential equa-
tions and interpret it in view of the physical mechanism that
generated the input-output relations. In their work, they show
that one latent function captured the smooth and periodic com-
ponent of the output, while two others focus on the noisier part
with an important residual periodical component.

An interactive concept called explanatory interactive learning is
introduced by (Schramowski et al., 2020) with the goal to im-
prove the model using corrected explanations. In their work,
sugar beet plants are classified as diseased or healthy and the
classified result is provided to an expert along with class ac-
tivation heatmaps. Interpretations that do not fit to the human
explanation, but were classified correctly, are identified and for-
mulated as penalty terms. In this way, the human expert in
the loop constrains the interpretations provided by the learned
model to match domain knowledge. An improved model can
be derived yielding more reasonable interpretations and thus
help form better explanations and more reliable results. Similar
ideas have been proposed, e.g., by (Ghosal et al., 2018), where
they use interpretation tools for image-based plant stress phen-
otyping. They produce so-called explanation maps as sums of
the most important features maps indicated by their activation
level to isolate the visual cues for stress and disease symptoms.
However, their work focuses on the comparison of manually
marked visual cues by an expert and the automatically derived
explanation maps, rather then the improvement of the model
and its interpretations.

One of the landmark problems in hyperspectral imaging and re-
mote sensing is spectral unmixing: given that a single pixel in a
remote sensing hyperspectral image will correspond to multiple
elements or types of surface, it is desirable to identify the indi-
vidual types of surface or elements present in the pixel. Several
methods from ML have been leveraged to solve the unmixing
problem (Heylen et al., 2014), including supervised learning
methods (e.g., SVM, NN) and unsupervised learning methods
(e.g., linear regression). Among these, linear regression argu-
ably provides the most transparent approach to the problem,
since it seeks the simplest linear combination of base element
spectra that matches the observation. However, the physical
process involving the spectrum acquisition from the mixture
does not follow the linear model assumed by the regression
methods, and nonlinear unmixing approaches have been pro-
posed to remediate this discrepancy (Dobigeon et al., 2014).

Methods that move further into the direction of explainable
ML for spectral unmixing increase the accuracy of the mixture
model by enforcing the physical behaviors underlying the ac-
quisition (Close et al., 2012). A simple approach learns a map
from the true nonlinear mixture to the idealized linear mixture
(e.g., learned by a NN) to which regression is applied (Koir-
ala et al., 2018). However, approaches like this leverage the
power of black-box models without any underlying intuition as
to the accuracy of the model; e.g., there is no explainable char-
acterization of the nonlinear mixture-to-linear mixture mapping
involved. A variety of approaches to unmixing that address
the nonlinear nature of the mixture leverage the Hapke mixture
model, which provides an approximation of the geometrical op-
tics underlying light scattering (Hapke, 1963, Shkuratov et al.,
2012). In particular, several efforts proposed methods based on
NNs that learn the Hapke mixing equation as a nonlinear map-
ping from spectra to mixture element concentrations (Guilfoyle
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et al., 2001, Altmann et al., 2011). Other methods use kernel-
based factorizations that integrate the nonlinear model in the
chosen kernel (Wang, Qian, 2016).

3.4 Challenge: Turn Results into Scientific Valuable Out-
comes

Related to the aforementioned challenges, another reason to
strive for explainable ML models is to obtain scientific insights
and novel discoveries (Roscher et al., 2020). Many works
address the task to learn input-output relations from observa-
tions and transfer them to new input-output relations, given the
learned model. However, this does not imply that the outcome
is valuable from a scientific point of view. The explainability
of the results is higher if, for example, derived parameters are
known and usable in the application domain (e.g., as input for
further simulations) rather than naive outcomes from which it
is possible to deduce what happens, but not why. Thus, learned
models and tools which help to derive the actual reasons of the
occurrence of the outcome foster the scientific value of it.

Scientific insights and novel discoveries can only be obtained
if the outcome is reliable, scientifically consistent and plaus-
ible, and can be exploited by the user. A major point is that the
reliability of the result can be questioned, even with given con-
fidence scores; therefore, trust in the result is not given. One
possible reason for such questioning is that an overly complex
model is not comprehensible to a human. However, interpret-
ation tools such as those presented in (McGovern et al., 2019,
Hochreiter, Klambauer, 2019, Wolanin et al., 2020, Toms et al.,
2019, Nagasubramanian et al., 2019) can be used to verify the
outcome using domain knowledge, and if necessary the model
can be improved as presented in (Schramowski et al., 2020) and
(Kierdorf et al., 2020). Methods that enhance or enforce sci-
entific consistency and plausibility also play an important role,
as presented in (von Rueden et al., 2020).

4. CONCLUSION AND FUTURE DIRECTIONS

In this work we discussed how explainable machine learning
can be beneficial when tackling commonly known challenges
in remote sensing for the bio- and geosciences. We focus on
identifying challenges where explainable machine learning can
contribute; nonetheless, we also see other promising directions.
This survey intended to review current advances towards ex-
plainable machine learning in the bio- and geosciences, and to
provide new ideas and research directions, but also to increase
interest in novel machine learning algorithms.

Although related research directions such as hybrid learning
(Reichstein et al., 2019) and informed machine learning (von
Rueden et al., 2020) are not covered in detail in this paper, we
want to point these out as important future directions. In the
broadest sense, various post-processing steps that are already
widely used can be seen as informed machine learning ap-
proaches. However, these approaches are generally performed
in two steps, and therefore finding an optimal solution with re-
spect to given domain knowledge is not guaranteed. With the
development of efficient optimization strategies that go hand in
hand with the rapid development of neural networks, we face
new possibilities to integrate domain knowledge early during
the learning process and to optimize the model accordingly.

We are convinced that incorporating domain knowledge to gain
explainability is a crucial next step in enabling explainability

for ML in remote sensing applications. To this end, the error
measure according to which the NN model is optimized should
take explanation errors into account, see (Rieger et al., 2019,
Schramowski et al., 2020). For instance, if certain parts of a
hyperspectral image do not contribute much to the quantity of
interest, they should be weighted less by the NN when making
its decision. Furthermore, when it comes to analyzing complex
data and gaining transparency for NN approaches a statistical
interaction analysis of the network’s degrees of freedom can
help to identify the most important contributions of both the
input features and the network weights, see (Tsang et al., 2018).

Another promising direction are domain-specific design
choices of the machine learning model (Beucler et al., 2019,
Camps-Valls et al., 2018). For example, neural networks of-
fer a variety of possibilities ranging from a specific choice of
the architecture to the integration of modules. As presented by
(Iten et al., 2020), single model components such as neurons
can be used to capture disentangled factors of variations. Ad-
ditionally, interactions between features can be represented by
specific neural network architectures (Tsang et al., 2018). Fur-
thermore, specific modules can be incorporated such as group-
ing layers (Yan et al., 2019) or attention modules (Lorenzo et
al., 2018), which provide added value in terms of interpretabil-
ity and thus the possibility of explanation, but do not necessarily
have to significantly influence the task-solving process.

A future direction which has barely been considered so far
in this context are evaluation metrics related to explainabil-
ity. For scenarios with small sample size or in view of ad-
versarial attacks, high accuracies are not inherently an indic-
ator for confidence and reliability. Moreover, accuracy does
not specify the quality of the outcome from a scientific view-
point. Therefore, additional evaluation criteria need to be de-
veloped. For example, (Karpatne et al., 2017) introduce a sci-
entific inconsistency value for an informed machine learning
method defined as a comparison between estimated test values
and values calculated from known physical laws. (Kailkhura
et al., 2019) propose a measure of trustworthiness of classific-
ation predictions taking into account the average Gower dis-
tance from a test sample to labeled samples in the same class
and the average Gower distance to labeled samples of other
classes. (Lapuschkin et al., 2019) analyze the predictions of
a model semi-automatically in order to check the reliability of
the obtained results. They cluster heatmaps obtained from spec-
tral relevance analysis and visually inspect the content of the
cluster. By that they uncover spurious behavior of a model such
as the clever-Hans-effect, where right decisions are taken for
wrong reasons. This has also been successfully applied to hy-
perspectral plant disease detection (Schramowski et al., 2020).

Finally, we want to emphasize that causality will probably be
one of the most important steps in future MLf research in rela-
tion to explainable AI. See (Runge et al., 2019) for an overview
of causal inference approaches in Earth system sciences and
(Perez-Suay, Camps-Valls, 2019) for a study on observation-
based causal inference in remote sensing and geosciences.
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