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ABSTRACT: 
 
Deep Learning (DL) ingrained into Mobile Augmented Reality (MAR) enables a new information-delivery paradigm. In the context 
of 6 DoF pose estimation, powerful DL networks could provide a direct solution for AR systems. However, their concurrent operation 
requires a significant number of computations per frame and yields to both misclassifications and localization errors. In this paper, a 
hybrid and lightweight solution on 3D tracking of arbitrary geometry for outdoor MAR scenarios is presented. The camera pose 
information obtained by ARCore SDK and vSLAM algorithm is combined with the semantic and geometric output of a CNN-object 
detector to validate and improve tracking performance in large-scale and uncontrolled outdoor environments. The methodology 
involves three main steps: i) training of the Mask-R CNN model to extract the class, bounding box and mask predictions, ii) real-time 
detection, segmentation and localization of the region of interest (ROI) in camera frames, and iii) computation of 2D-3D 
correspondences to enhance pose estimation of a 3D overlay. The dataset holds 30 images of the rock of St. Modestos – Modi in 
Meteora, Greece in which the ROI is an area with characteristic geological features. The comparative evaluation between the prototype 
system and the original one, as well as with R-CNN and FAST-R CNN detectors demonstrates higher precision accuracy and stable 
visualization at half a kilometre distance, while tracking time has decreased at 42% during far-field AR session. 
 
 

1. INTRODUCTION 

Deep Learning (DL) has a profound impact on how data are 
structured, analysed and interpreted. Instead of a linear, sequent 
and complex logic, multi-layered neural networks achieve one-
shot computation and learning. The most commonly used for 
visual tasks are Convolutional Neural Networks (CNNs). CNNs 
have simplified object recognition by classifying or assigning 
labels to image datasets based on their concept. They can output 
bounding box coordinates predicting objects 2D relative position 
fast and efficiently enough for real-time mobile applications. 
Their key benefits over other algorithms in the field are the 
weight sharing and the automatic detection of features without 
any human supervision (Alzubaidi et al., 2021). To harness their 
potential to the fullest, CNNs are coupled with computer vision 
and Augmented Reality (AR). AR allows for displaying virtual 
information aligned with their real-world position through a 
camera-equipped device. Therefore, this fusion approaches the 
close relationship between human visual perception and memory. 
The captured visual information is processed and interpreted 
based on prior experience, and then, translated into insights used 
to drive decision making. 
 
At its core, AR is a motion tracking issue involving the concepts 
of features detection and matching, photogrammetric bundle 
adjustment, homography estimation and 6 Degrees of Freedom 
(DoF) tracking (Marchand et al., 2016). It entails stable poses and 
accurate localization across successive image frames derived 
from the camera feed in real-time. Computer vision methods 
based solely on features points like Structure from Motion (SfM), 
often lead to large registration errors while localization with 
visual simultaneous localization and mapping (vSLAM) 
(Durrant-Whyte and Bailey, 2006) or Visual Odometry (VO) 
(Nister et al., 2004) is prone to partial occlusion. On the other 
hand, outdoors GPS positioning is still inaccurate and subject to 

shifting by a certain offset and coordinate changes over time. 
Although DL underlies end-to-end solutions to 6 DoF pose 
estimation, temporal stability of the tracking is hard to handle by 
the neural network directly. 
 
The presented work examines the synergy of a lightweight 
instance segmentation Mask-R CNN model with the 6 DoF 
tracking of ARCore for complex and large-scale outdoor 
environments. Besides a class label and a bounding-box offset, 
Mask-R CNN outputs the object mask. In the proposed 
methodology, the mask output and its relative screen ratios are 
guiding the actual feature-point regression for pose estimation 
with 2D-3D correspondences. The network is successfully 
trained to distinguish between 5 types of land use and 3 types of 
different rock material and formations. On AR session, the model 
recognizes the candidate area, gets its shape and relative screen 
position while texture masking limits the detector’s window size 
and reduces the computational load of SLAM during features 
extraction. Finally, the 2D coordinates of the boxes are used 
against ARCore’s Hit test to determine where a 3D asset should 
be accurately overlaid. To our knowledge, the generalization of 
MASK-R CNN in the context of AR is briefly addressed in the 
literature. Moreover, high tracking accuracy and stable 
visualization are achieved for long-distance overlays while 
tracking and 3D models’ drawing times are decreased up to 42% 
and 32% accordingly. The attained performance demonstrates 
that vSLAM is significantly optimized by the adoption of the 
observational redundancy of the photogrammetric space 
resection and the progressive refining strategy driven by a simple 
segmentation CNN model. 
 
Case study is the rock of St. Modestos or Modi, located at the 
UNESCO site of Meteora, Greece. The region of interest (ROI) 
is part of the rock summit with adjacent physical and visual 
geological features that define a characteristic pattern. The 3D 
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photorealistic reconstruction of the no longer existent monastery 
of St. Modestos, traces of which are still visible on the pinnacle 
of the rock, is the 3D asset, superimposed on the center of the 
ROI. Besides lightweight 3D geometries, the low-cost outdoor 
mobile AR application can visualize and integrate into their 
unknown physical environments high-resolution 3D models 
acquired by close-range or aerial photogrammetry and derived by 
image-based 3D reconstruction. By integrating a relative training 
dataset and fine tuning only the upper convolutional layers, the 
learning can be transferred in related situations. Cultural Heritage 
sites, natural landscapes, urban spaces and residential areas can 
be augmented by high-resolution models for the purposes of 
education, land management, construction, architecture and 
navigation. The rest of the paper is organized as follows: Section 
2 reviews related methods and works, current advancements as 
well as research challenges. In Section 3, the network 
architecture and the steps of the proposed methodology are 
described in detail. Section 4 outlines the implementation and 
results of CNN training and AR application. Section 5 assesses 
them in comparison with those ones achieved through other CNN 
detectors and pure computer vision. Finally, Section 6 concludes 
the proposed work and depicts the future research steps.  

 

2. RELATED WORK 

2.1 Deep Learning 

The advances in sensors and hardware of mobile devices have 
expanded the use of DL to real-life applications. That pace will 
continue to accelerate, thanks to a large number of DL platforms 
and frameworks ported to Android operation system, such as 
TensorFlow Lite (Google Inc., 2021), MXNet (Apache Team, 
2021) for on-device inference and deployment as well as 
libraries, such as ML Kit (Google Inc., 2021), Keras (Keras 
Team, 2021), and PyTorch (Paszke et al., 2019), that undertake 
training. All of the above APIs are optimized for mobile 
integrations but ML Kit is the only one that bundles together 
Google’s machine learning algorithms, TensorFlow Lite and the 
android network API (Baruah et al, 2021).  
 
Among the various architectures of neural networks (RvNNs), 
Convolutional Neural Networks (CNNs) are currently serving as 
the main method of DL in mobile vision tasks and spatial data. 
This is due to the fact that convolutional layers in CNNs allow 
for fast and reliable feature extraction from visual data, inherently 
taking into account spatial correlations. This enables even simple 
CNN architectures to extract semantic information from visual 
sources (Bakalos et al., 2020). Region-Based CNN (R-CNN) 
model is a multi-stage approach of object detection and semantic 
segmentation comprising of three modules: region proposal, 
feature extraction and classifier (Girshick et al., 2014). The 
model family has evolved with the techniques of Fast R-CNN 
(Girshick., 2015) and Faster-RCNN (Ren et al., 2016). Despite 
the high level of accuracy, these models are not speed-optimized. 
Real-time use embraces unified architectures and one-stage pose 
estimators that detect ROIs containing target objects and predict 
concurrently their class labels (Martinez-Alpiste et al., 2021). 
YOLOv4 is the latest and most accurate performant model of 
YOLO family algorithms for real-time detection on conventional 
GPUs (Bochkovskiy et al., 2020) while SSD (Single Shot 
Detector) foresees the bounding boxes and the categorization 
probability (Liu et al., 2016). It divides their space into several 
anchor boxes at a variety of aspect ratio compared to Faster-
RCNN but both detectors, do not regress 3D bounding boxes 
directly and are not suited to AR applications. Since AR is an 
already intensive task, their concurrent operation for the recovery 

of the 3D poses from a frame sequence captured by the live 
camera involves many steps of intense computation. 
Furthermore, humidity conditions, dynamic lighting, varying 
transformations in size, rotation and aspect ratios as well as 
occlusion yield to false positive feature detection and inaccurate 
alignment. Thus, the rest of the literature review emphasizes on 
image classification and object recognition methods adapted to 
the limited computing power and energy available of mobile 
devices. Related works concern the use of DL as a means of 
optimization of 6 DoF pose estimation during an AR session and 
not as a direct solution.  
 
2.2 Marker-less Mobile Augmented Reality 

A state-of-the-art improvement of Faster R-CNN is Mask-R 
CNN (He et al., 2017). It adds a branch for predicting 
segmentation masks on each ROI while simultaneously, it 
classifies and generates their bounding boxes. Its high-
performance precision and inference speed are acceptable in real-
time usage, considering the addition of the segmentation process 
in the architecture. Mask-R CNN outperforms YOLOv3 and 
YOLOv4 when transformations like rotation and scaling are 
applied to image datasets (Zhang et al., 2021). Only one study 
has examined its integration in AR, attaining a marker detection 
accuracy of approximately 70% (Perdpunya et al., 2021). 
 
The detected objects or areas along with their masks can be post-
processed in order to regress object poses in 3D space. The 
presented work uses their screen coordinates as extra geometric 
parameters to overlay 3D models on their real-world position 
accurately and fast. A similar method of pose and shape 
estimation from 2D bounding boxes uses MultiBin, a deep CNN 
architecture, for orientation prediction and choice of box 
dimensions as regression parameters (Mousavian et al., 2017). 
Our prototype is built with ARCore SDK for Android operating 
systems which integrates vSLAM for simultaneously locating the 
camera position and mapping the real world from a monocular 
camera (Google Inc., 2021). Other SDKs dedicated for MAR 
adopt either vSLAM, like ARKit (Apple Inc., 2021) for iOS and 
WikiTube (Qualcomm Inc., 2021) or variations of the algorithms. 
EasyAR (EasyAR Inc., 2021) and Vuforia (PTC Inc., 2021) fuse 
camera and IMU data in the context of VISLAM (Visual-Inertial 
SLAM) method. One key difference lies on the ability of 
VISLAM to estimate scale accurately and consistently through 
the inertial measurements (Jinyu et al., 2019). In general, the 
synergy of the aforementioned AR software with DL 
architectures is an active research area with a variety of 
applications in medicine (Pauly et al, 2015), retail industry and 
advertising (Upadhyay et al, 2020), manufacturing (Sahu et al., 
2021), robotics (Bassyouni and Elhajj, 2021) and weather 
forecast (Freeman, 2020). 
 
The adaptation of DL object detection, registration of virtual 
overlays and tracking under uncontrolled outdoor conditions has 
also been addressed Rao et al. (2017). The results of a modified 
version of SSD network are spatially associated with the sensor 
data of a GPS receiver, the Inertial Measurement Unit (IMU) and 
the magnetometer attain precise registration and sufficient 
robustness during tracking. One year later, Wang et al tackled 
outdoor localization with a visual-GPS fusion method. After 
geohash conversion and ORB feature detection, a Faster R-CNN 
detector matches the recognized scene with the target while 
RANSAC removes wrong match results and estimates camera’s 
homography (Wang et al., 2018). Finally, DeepMobileAR is a 
mobile AR application that merges ORB-SLAM with a SSD 
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object detection framework (Lee et al., 2019). From a 
performance standpoint for mobile AR, only a few approaches 
can be considered as complete. Liu et al. (2019) offload CNN 
object detection to edge cloud computing and calculate only the 
valid region of the output feature map of the network in order to 
reduce latency and improve detection accuracy. MediaPipe 
Objectron developed by Google, exploits the ground truth camera 
pose information from the AR session data to detect 3D objects 
from a single RGB image (Ahmadayan et al., 2020). More 
recently, a YOLOv3 detection model is incorporated to an AR 
prototype that classifies any images as AR markers, detects and 
tracks them in real-time (Le et al., 2021). Finally, apart from 
enhancing the functionality of AR with DL, the inverse problem 
has also been tackled. The received image frames as well as the 
interior and exterior orientation parameters of the camera can be 
employed to generate labelled or synthetic training datasets (Su 
et al., 2021).  
 

3. METHODOLOGY 

 
3.1 Neural Network Architecture 

Region-based CNNs or regions with CNN features (R-CNNs) are 
among the best performing approaches in applying deep learning 
paradigms to object detection. These architectures first extract 
region proposals form the input image. These regions act as 
ground truth data and CNN forward propagation is used on each 
region to extract representative features that are then used in the 
classification process of the region under analysis, producing as 
a final output a bounding box of this region proposal. The R-CNN 
approach can be broken down into four main steps. Selective 
search is initially performed to identify region proposals. For 
each proposal a usually pretrained CNN is used to extract 
features. These features and the region proposal label is used to 
train multiple binary support vector machines (SVM). In this step 
the number of SVM classifiers is equal to the number of predicted 
classes. Finally, a linear regression model predicts the ground-
truth bounding box.  
 
To compensate for the performance loss during the extraction of 
salient features from each individual region, a Fast R-CNN 
approach is used where the CNN extracts features for the entire 
image, allowing for a single forward propagation to extract 
features for all the regions. Moreover, a region of interest pooling 
layer is used. Specifically, a Mask-R CNN approach is applied, 
where the ROI pooling layer is substituted by a ROI alignment 
layer and a fully convolutional CNN (FCNN) is used to predict 
the necessary mask. The overview of the network architecture 
can be seen in Figure 1. 
 
3.2 Mask-R CNN in Augmented Reality 

TensorFlow Lite ports the trained model to Android converting 
it to a FlatBuffer (tflite) file. The Mask-R CNN instance gets the 
camera frame as bitmap and outputs a bitmap of the same width 
and size. The input and output of the model are on the GPU side, 
and the only CPU calculations concern extracting the bitmap and 
passing it into the GPU side. The camera frame retrieval, 
segmentation mask texturing and object detection operate at 
different threads. The code iterates the number of the detected 
regions that are ranked with a score associated with the 
probability of correct prediction. Only the most confident region 
is kept ensuring that its confidence is greater than the minimum 
one. Then, a class-independent segmentation is performed, 
targeting the attention ROI. 
 

Figure 1: Architecture of the Mask-R CNN 
 
The predicted mask is resized to fit the image dimensions, 
inverted and assigned to a SurfaceView object of the graphics 
API. SurfaceView renders transparent content and has increased 
performance in compositing the masks over camera view. The 
output bitmaps are sent to SLAM for motion analysis. 
Concurrently, bounding rectangles are calculated from mask 
contours and stored into a buffer array. Thus, only the potential 
ROI participates in Mask-R CNN’s detection as well as in the 
feature matching and bundle adjustment of vSLAM. At the 
succeeding of object localization, the network performs a 
bounding box regression and then, adjusts its weights and biases 
optimizing for bounding box predictions. 
 
3.3 Robust Pose Estimation  

The integrated vSLAM algorithm implements feature extraction, 
feature matching between frames and camera motion estimation 
including loop detection and loop closure. Since the detection 
area of the frame is reduced by the mask layer, the potential 
outliers and noise are minimized. Then, ARCore creates a line 
extending from the camera and casting into the scene. If ray 
casting occurs, a list of arrays that exposes the collection of 
collision points or planes is populated. ARCore uses Anchors, 
tracked physical locations, to determine the position where the 
virtual object is to be drawn, in relation with the ray casting 
results. Since they are subject to drifting effects and 
misplacement when distance exceeds 10 meters, long-distance 
registration is estimated by the 2D-3D correspondences.  
 
Once ray casting, the SLAM’s keyframe and the initial camera 
pose matrix are extracted. Whether the previous frame is a key 
frame, the process of pose refinement is initialized. The 
following geometric and mathematical techniques are inherited 
by the resectioning problem and depict the strong relationship 
between the proposed CNN-based AR and photogrammetry. The 
inner array of the tensors represents the bounding boxes as four 
floats in the range [0.0, 1.0], which are converted to actual screen 
coordinates. Given the pose and assuming that camera interior 
orientation parameters are known, the origin of the world 
coordinate system is translated into the projection center, which 
is the origin of the 3D Cartesian camera system. Concurrently, 
the world coordinate system is rotated into the camera system. 
This is achieved by passing the joint rotation-translation matrix 
[R|t] of camera pose in the Model View Projection (MVP) 
sequence of OpenGL’s transformations. The computation returns 
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a float array containing the location followed by a normalized 
direction vector (Figure 2).  
 

 
 

Figure 2: World coordinate frame ray computation for a screen 
point. 

 
Their 2D-3D correspondence is recovered and the new frame 
rays are added to the ARCore’s list. Pose estimation is 
recalculated and an Anchor is created based on the generated 
coordinates, that it is ideally, located at the center of the bounding 
box. The 3D model is displayed with a rotation perpendicular to 
the estimated surface normal of the Anchor. By default, its 
biggest dimension equals to the biggest dimension of the 
bounding box. The limited field of view on the screen makes it 
difficult for the end-users to perceive depth, scale and distance. 
Placing the model within long distances from device’s camera 
makes it appear small. For far-field AR, at distances of around 
200 – 500 meters, a scale adjustment is designed. The length of 
the biggest edge of the bounding box is divided with four time its 
size in world meters.  
 

4. PROTOTYPE SYSTEM  

 
4.1 Experimental Setup 

All the aspects of the Mask-R CNN were trained using a captured 
dataset. The initiall CNN that is able to export salient features 
from the input, and also to produce the necessary masks, that will 
act as the annotation during training. 

4.1.1 Input Data: The dataset contains 30 images of 5 types 
of land use while the pillar consists of 3-4 types of different 
material. The ROI is located at the summit of the rock and it is 
marked by vertical lines. These physical morphological 
formations serve as the characteristic feature points that enhance 
the ROI detection task. Throughout the imagery, it can be 
perceived from diverse viewpoints and transformations in size 
and rotation.  
To appropriately train the data, an annotation of the dataset took 
place. The annotation process is based on two main steps. Firstly, 
the sections of the image that represent solid rock ground were 
appropriately identified. Then, the areas on the top of the rock 
that are appropriate for the 3D model were identified from these 
sections of the image. The training dataset underwent 
augmentation and then it was fed to an extended K-means 
clustering algorithm that grouped areas with visual similarity. To 
improve the clustering performance, the image input was 
augmented transforming the 3D multicolour image to a larger 
3D-cube. Beyond the information about the different colour 
channels, information about the edges and the image entropy is 
also stored. Thus, the initial dataset that included images with a 
resolution of 5472x3648x3, is transformed in a resolution of 

5472x3648x5. These images were fed into a k-means cluster that 
created a two-dimensional cluster map of using them as input. 
Suitable clusters were selected to disregards regions that were not 
part of the desired ROI. This set created the image mask that was 
used for training.  To smooth the output, and also, to remove 
outliers, a 20x20 median filter was applied to all the generated 
masks. 
 
4.1.2 Training: From the 30 images available, 6 images were 
also used to train the CNN of the architecture developed for the 
feature extraction step. This CNN, has an autoencoder like 
structure, i.e., the input and output channels are of the same size. 
Only the encoding part was used, for the feature extraction step 
of the Mask-R CNN. The rest of the images were split into 
training and testing sets, containing 19 images and 5 images 
respectively. To increase the training samples for the feature 
extraction step, non-overlapping patches of 228x228 resolution 
were considered, while the resolution of these non-overlapping 
patches was changed to 556x556. In all the images, flipping, and 
image transformations under different brightness and saturation 
values were used to augment the dataset. This resulted in a total 
of 3072 training samples of a 228x228x5 resolution for the 
feature extraction and 18432 samples of a 556x556x5 resolution 
for the Mask-R CNN.  All the learning models, including various 
clustering and other CNN algorithms that were exploited, were 
implemented and trained in the Google Colab infrastructure, 
using Tensorflow and Keras learning libraries. 
 
4.1.3 Accuracy Testing: To assess the performance of the 
Mask-R CNN on the dataset, the Average Precision metric was 
used over an IoU of 0.5. This metric offers a better understanding 
of the overall performance of the model, in comparison with 
simple precision and recall values. While precision indicates the 
percentage of correct predictions, and recall how well the 
positives are found, the AP metric represents the area under the 
precision-recall curve. Moreover, because of the alignment of the 
ROI and the predicted ROI, a simple pixel to pixel comparison 
does not suffice. Thus, the overlap of the prediction with the 
ground-truth is measured with a threshold of 0.5. The selected 
value means that, if the area of overlap between the prediction 
and the ground truth is at least half of the area of the union of the 
two, a classification is considered to be successful. Table 1 
presents the results of this analysis. To assess the performance, it 
was compared with a Fast R-CNN architecture of the same 
structure but with a ROI pooling instead of a ROI Alignment 
layer, as well as with a simple R-CNN. In the table, the Accuracy, 
Precision, Recall and AP50 are presented along with the time 
needed to receive an output from each method. 
 
Table 1. Performance comparison among R-CNN, Fast-R CNN 

and Mask-R CNN.  

Method 
Metrics Time 

(Sec) Accuracy 
(%) 

Precision 
(%) 

Recall 
(%) 

AP50 
(%) 

R-CNN 81.27 23.56 48.00 48.23 2 
Fast-R CNN 79.81 23.28 54.00 52.60 0.2 
Mask-R CNN 85.05 34.32 72.00 68.84 0.24 

 
4.2 System architecture of AR prototype 

The Keras classifier is converted to a mobile-optimized network 
architecture, TensorFlow Lite model. The model is bundled with 
the application and a local interpreter is created to inspect it into 
a native session.  ML Kit Android library performs on-device 
inference. To invoke model acceleration, inference takes place on 
the GPU backend side in 32-bit float precision. Despite the lack 
of native rendering engines, ARCore supports OpenGL ES 
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rendering. Figure 3 summarizes the development flow and 
illustrates the methodology described in Sections 3.2 and 3.3. 

 
Figure 3: World coordinate frame ray computation for a screen 

point. 
 
4.3 Case study & Results 

The asset for the AR prototype is a photorealistic 3D mesh of 
wavefront (OBJ) format. The color and texture information are 
stored in an associated MTL file along with 21 UV texture 
images. It comprises 36K vertices and 60K faces, corresponding 
to a size of 6 MB. The mesh is a 3D representation of the 
destroyed Byzantine monastery of St. Modestos – Modi. Surface 
traces and ruins of its tower are still visible on the ridge of the 
rock. These archaeological evidences along with the 
interpretative hypotheses based on coeval constructions lead to 
the determination of the geometry, size and spatial position of the 
no-longer existing structures (Figure 4). 

 
Figure 4. The 3D model of the monastery of St. Modestos. 

 
Once the ROI is detected, the 3D model is overlaid at the given 
pose and scaled to its real-world proportions (Figure 5). 
However, the visualization is not consistent down to the details 
due to a drop in texture quality (Figure 5a). To preserve its 
realistic appearance, normal maps are used for texturing and 
Physically Based Rendering (PBR) is enabled (Figure 5b).   
While there is no visual mismatching in the case of the far-field 
overlay, the occlusion problem has not been solved, reducing 
realism consistency. Addressing its size perception from half a 

kilometre distance, its length is triple the width of its bounding 
box. It can be distinguished from the surrounding natural 
landscape and the end-user does not under-estimate its size 
against the real scene depth (Figure 5c). 

Figure 5. Screenshots of the overlaid 3D reconstruction 
applying: [a] diffuse shading, [b] Physically Based Rendering 

and [c] Scale adjustment. 
 
 

5. EVALUATION 

 
5.1 Mask-R CNN algorithm  

The AP50 metric showcases that the Mask-R CNN outperforms 
the other classifiers. The differences in Precision imply 
significant alignment issues; however, Mask-R CNN manages to 
compensate for these misalignments. Moreover, high accuracy is 
achieved by all tested methods. This indicates that R-CNN 
architectures can at the very least identify sufficiently areas of 
interest. Finally, the time requirements of a simple R-CNN 
network are too high to be used in the proposed application. This 
was expected, as the need to do multiple forward propagations in 
the CNN for each region label creates a computational overhead. 
However, both Fast-R CNN and Mask-R CNN approaches 
demonstrate sufficient time complexity, that will allow the 
prediction of the ROI multiple times per second. 
 
5.2 Registration and Tracking 

The evaluation tests are executed on a high-end smartphone with 
a Snapdragon 720G CPU at 2.30 GHz, 8 GB of RAM, a 
resolution of 1080x2400 pixels and 60Hz refresh rate. First of all, 
the registration accuracy is analyzed using the root mean square 
error (RMSE), of the distances between the inliers and their 
reprojected 3D reference features using the refined estimation of 
the camera pose, as expressed in equitation (1). 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  �
1
𝑁𝑁�

(𝐴𝐴𝑖𝑖 − 𝑃𝑃𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

                       (1) 

 
where  N = number of samples 
 Ai = detected points in the keyframe  
 Pi = observed points  

[b] 

[a] [c] 
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Table 2 summarizes the average RMSE values as ratios of correct 
distances (in pixels) between ground truth pairs of corresponding 
points to their total number. The selected number anchor points 
for each training set is 20 distributed in different areas of the ROI 
for both a short-distance AR session (10m distance) and a long-
distance one (300m distance). In case of original SLAM, the 
input frame is not masked. The proposed pose estimation 
refinement achieves a better score than vSLAM on large-scale 
scenes and the relative distance values remain stable for a 50 sec 
period of tracking for both AR cases. The overall approximation 
accuracy needs yet to be improved.  
 
Table 2. Reprojection RMSE error as a ratio for various anchor 

point selection sets 

Case Point 
Sets 

Proposed 
method 

(%) 

Original 
SLAM 

(%) 
Short 

distance 
AR 

1 0.66 0.91 

2 0.75 0.93 
Long 

distance 
AR 

3 0.74 0.52 

4 0.71 0.67 
 
Benchmarking on detection and segmentation precision of 
MASK R-CNN was performed under different scale, rotation, 
distance and lighting conditions. A coloured bounding box and 
its confidence value (probability in percentage) are drawn around 
the ROI. In Figure 6, characteristic true positives are depicted 
with white while false positives (FP) and false negative (FN) 
results appear with red. FP concerns a misplaced detection and 
FN an undetected bounding box. It is indicated that 
misclassification occurs when the ROI covers a large area. This 
is due to the differences in rock formation of some instances (e.g., 
where the area is large and planar), accuracy of MASK R-CNN 
shape extraction as well as orientation in the camera frames. This 
is evident even in examples where ROIs are successfully 
predicted, however, the outputs tend to be misaligned towards the 
edges of the rock. So, the capturing of more representative 
samples, and especially through camera angles that showcase 
large ROIs, is necessary to further improve the performance. 
There are also, cases of false positive identifications of ROIs in 
vertical surfaces. An additional step of filtering these masks 
based on their orientation can quickly and effectively disregard 
such instances. However, the proposed method manages to detect 
and localize with high confidence even at 500 meters distance. 
 
The influence of the ROI’s physical distance on the positional 
error and the number of feature points detected was tested against 
a total number of 9 AR scenarios. It is assumed that features are 
correctly detected, already identified and their actual positions 
are computed independently. The camera looks at the ROI at a 
fixed vertical tilt angle θ˚ = 35˚ and the angles around the x and 
z-axis are constant at 0°. In every sequence that the distance of 
the camera to the pattern is changed, the center of the ROI is 
always projected in the center of camera frame. Table 3 shows 
the relationship between the distance from the camera and 
resulting pixel-size diameter of the detected ROI in the image 
frame. It also, presents the number of keypoints extracted by the 
detection algorithm of SLAM in the last frame of each sequence, 
as it is suggested by Mozos et al. (2007). This way prevents 
outliers or points that are lost during tracking, to be selected.  
 
 
 

 
 
Figure 6. Output of the MASK-R CNN detector under different 
conditions of scale, rotation, lighting and occlusion: Bounding 
boxes out of the mask shapes with confidence value. Wrong 

predictions are highlighted with red. 
 
Table 3. The number of feature points detected in the last frame 

of each sequence for different camera distances. The focal 
length is 5.58 mm for a resolution of 1080 x 2400 pixels. 

 
Distance 

from camera 
to the ROI 
(meters) 

Diameter 
(pixels) 

Feature 
points 

(proposed 
method) 

Feature 
points 

(original 
SLAM) 

10 2143 747 2841 
50 1758 650 1936 

100 1181 513 1009 
150 1026 477 520 
200 778 462 499 
250 542 365 176 
300 209 387 93 
400 136 288 74 
500 98 141 89 
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Traditional SLAM gets more accurate when the size of the ROI 
on the image becomes bigger. Moreover, the positional error of 
Table 2 increases more than linearly with the distance, as it is 
expected. The proposed method outperforms the conventional 
SLAM only after 200 meters distance and yields approximately 
the same number of features in the tests of long-distance 
sequences. This observation can be explained by the construction 
of pixel-wise masks for non-relative objects in the image that 
keeps the detector running at the same but limited by the 
bounding box, region. Slower execution times, the threshold used 
for the validation of pose as well as the small dimensions of the 
projected ROI are the main factors resulting into the low number 
of features detected during short-distance AR.  
 
The AR activity is being recorded five times with Android 
Profiler and its trace system for benchmarking validation. A 
seamless AR experience requires a stable frame rate of 30-40 
frames per second (FPS), which equals to a 44.45 msec duration 
of capturing, processing, rendering and visualizing. Thus, a fixed 
framerate of 40 FPS is set. If rendering time exceeds this limit, 
frame drop occurs. Table 4 reports frame counts and latency at 
three critical moments: on pose estimation, on 3D model loading 
and on final display of 3D model, while Figure 7 demonstrates 
its CPU usage during the camera thread activity. The prototype 
succeeds in delivering a good frame duration distribution and 
maintaining the GPU at a consistent performance. A limitation of 
our method is indicated during short distance overlays due to the 
time spend during MASK-R CNN execution.  However, the 
improvement in speed under far-field AR, in which the 3D model 
is superimposed 500 meters away from the camera device, is 
noticeable. It decreases tracking time up 42% and 3D models’ 
drawing time to 32%. To investigate the degraded frame rate and 
latency of original vSLAM version, the CPU usage during a 15 
sec long-distance AR session was captured (Figure 7). 
 
Table 4. Metrics on UI thread, namely the main thread, at pose 

estimation, loading and drawn time. 

Case Process 
Proposed 
method 

Original 
SLAM 

FPS Delay FPS Delay  

Short 
distance 

AR 

Pose 
estimation 37 0.3 sec 40 0.1 sec 

Loading 35 
3.8 sec 

36 
2.2 sec 

Display 33 36 

Long 
distance 

AR 

Pose 
estimation 29 2.1 sec 23 3.6 sec 

Loading 27 
4.5 sec 

20 
7.9 sec 

Display 26 20 

 
Figure 7. CPU usage comparison of our method (top) and 

original vSLAM (bottom), during a 15 sec AR session. 
 
As it can be observed, the synergy of pose estimation refinement 
and mask overlay layer is computational effective with up to 25% 
decrease in CPU usage. The segmentation phase minimizes 
outliers and noise during SLAM’s feature detection and yields to 
a noticeable increase in performance as the CPU computational 

overhead is minimized by 18%. The strategy of a fixed 40 FPS 
framerate and the exploitation of GPU acceleration during real-
time processing compensate for accuracy and rendering speed.  
 
 

6. CONCLUSIONS AND FUTURE WORK 

The objects in the virtual and real scene must be precisely aligned 
with respect to each other in order to achieve the perception of 
coherent coexistence. Thus, pose estimation stage determines the 
quality, performance and immersion of the whole AR experience. 
DL and specifically, CNN models can be used as a means of 
optimizing this task. The proposed method enhances real-time 
large-scale outdoors tracking with MASK-R CNN instance 
segmentation and vSLAM of ARCore SDK. The Mask-R CNN 
model is successfully trained to distinguish between the rock cliff 
and its top surface while it excludes vegetation, build-up area and 
sky. During the AR session, it recognizes and localizes the ROI 
in the camera preview. The phase of segmentation creates a mask 
over other irrelevant regions and outputs the ROI ground-truth 
bounding boxes. Their calculated 2D-3D matches and the 
application of mask texturing over the adjacent regions in live 
camera frame, improve vSLAM’s tracking accuracy and speed 
for far-field overlays. The prototype validates the applicability of 
the developed method in outdoors AR scenes of complex 
physical and geological characteristics. Currently, the AR 
tracking is not yet well-optimized for short-distance scenarios in 
which ARCore’s Anchor functionality and SLAM consistently 
outperforms. Further work includes the adjustment of Mask-R 
CNN parameters and training settings to generalize to unseen 
complex natural scenes, optimization of spatial tracking accuracy 
as well as occlusion handling leveraging SLAM’s scene mapping 
and depth perception. The impact of additional parameters like 
lighting conditions, camera distortion, occlusion and noise is 
necessary to be analysed. Finally, a similar evaluation needs to 
be undertaken for the IMU tracking errors accumulated over time 
in relevance to translation, rotation and distance from the camera. 
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